大数据时代煤矿安全风险治理模式研究
Research on coal mine safety risk management model in the era of big data
-
摘要: 为解决煤矿安全风险传统治理模式风险识别速度慢、控制精准度低等问题,在深入分析现有治理模式基础上,将风险防范与应急处置引入煤矿安全风险治理模式;首先,基于灾害成因理论与全生命周期理论,将煤矿安全风险治理解构为3个标准环节,即风险形成、风险发展和风险衰退;其次,根据3个标准环节的风险性质,引入相应的治理手段进行对应分析,包括风险识别、风险管控和应急措施;最后,紧扣煤矿风险因素,结合大数据技术,构建以“数据感知-数据分析-数据服务”为一体化的煤矿安全风险治理模式。结果表明:该治理模式能够有效提升煤矿风险识别速率及治理效能,同时有利于完善煤矿安全治理体系建设。Abstract: In order to solve the problems of slow risk identification and low accuracy of control in the traditional management model of coal mine safety risk, risk prevention and emergency response are introduced into the coal mine safety risk management model based on the in-depth analysis of the existing management model. Firstly, based on the theory of disaster causation and the whole life cycle theory, the coal mine safety risk management is deconstructed into three standard links, namely risk formation, risk development and risk decline. Secondly, according to the nature of risks in the three standard aspects, corresponding management tools are introduced for corresponding analysis, including risk identification, risk control and emergency measures. Finally, the risk management model of coal mine safety, which is integrated with “data perception-data analysis-data service”, is built by focusing on coal mine risk factors and combining with big data technology. The results show that this management model can effectively improve the identification rate, guarantee the safety of coal mine system, and improve the construction of coal mine safety management system.
-
Keywords:
- big data /
- coal mine safety /
- risk management model /
- emergency measure /
- intelligent mine
-
-
[1] Liu Q, Meng X, Hassall M, et al. Accident-causing mechanism in coal mines based on hazards and polarized management[J]. Safety Science, 2016(1), 85: 276. [2] 王龙康,聂百胜,蔡洪检,等.煤矿安全隐患动态分级闭环管理方法及应用[J].中国安全生产科学技术,2017,13(6):126-131. WANG Longkang, NIE Baisheng, CAI Hongjian, et al.Approach for dynamic classified and closed-loop management of potential safety hazard in coal mine and its application[J]. Journal of Safety Science and Technology, 2017, 13(6): 126-131.
[3] 李贤功,宋学锋,孟现飞.煤矿安全风险预控与隐患闭环管理信息系统设计研究[J].中国安全科学学报,2010,20(7):89-95. LI Xiangong, SONG Xuefeng, MENG Xianfei. Study on prevention and control of coal mine safety risk and design of hidden danger closing management information system[J]. China Safety Science Journal, 2010, 20(7): 89-95.
[4] Cheng J, Mei J, Peng S, et al. Comprehensive consultation model for explosion risk in mine atmosphere-CCMER[J]. Safety Science, 2019, 120: 798-812. [5] 毛善君,刘孝孔,雷小锋,等.智能矿井安全生产大数据集成分析平台及其应用[J].煤炭科学技术,2018, 46(12):169-176. MAO Shanjun, LIU Xiaokong, LEI Xiaofeng, et al. Research and application on big data integration analysis platform for intelligent mine safety production[J]. Coal Science and Technology, 2018, 46(12): 169-176.
[6] 疏礼春.基于大数据的云边一体化煤矿安全生产风险监测预警平台[J].煤矿安全,2021,52(5):144. SHU Lichun. Cloud edge integrated coal mine safety production risk monitoring and early warning platform based on big data[J]. Safety in Coal Mines, 2021, 52(5): 144.
[7] 何敏.智能煤矿数据治理框架与发展路径[J].工矿自动化,2020,46(11):23-27. HE Min. Framework and development path of data governance in intelligent coal mine[J]. Industry and Mine Automation, 2020, 46(11): 23-27.
[8] 宿国瑞,贾宝山,王鹏,等.基于多源异构数据的煤矿安全管理效果评估[J].中国安全科学学报,2021,31(6):64-69. SU Guorui, JIA Baoshan, WANG Peng, et al. Evaluation of coal mine safety management effect based on multi-source heterogeneous data[J]. China Safety Science Journal, 2021, 31(6): 64-69.
[9] 吴勇,黎梦兵.环境健康风险的动态治理:模式、维度与路径[J].吉首大学学报(社会科学版),2021,42(3):54-64. WU Yong, LI Mengbing. Dynamic governance of environmental health risks: models, dimensions, and paths[J]. Journal of Jishou University (Social Science Edition), 2021, 42(3): 54-64.
[10] 赵发珍,赵官虎.大数据环境下面向突发公共卫生事件的一体化治理研究[J].电子政务,2020(5):28. [11] 李伟权,聂喻薇.叠加型风险下整合型应急预警联动机制缺失问题研究—12·20深圳特别重大滑坡事故的教训[J].中国行政管理,2016(9):128-134. LI Weiquan, NIE Yuwei. The research on the problems of the integrated emergency early warning mechanism of joint action at the superposition type risk:Shenzhen’s case[J]. Chinese Public Administration, 2016(9): 128-134.
[12] 李新春,刘全龙,乔万冠,等.煤矿安全通风系统脆性风险分析及管控研究[J].科技管理研究,2017,37(14):254-259. LI Xinchun, LIU Quanlong, QIAO Wangguan, et al. Risk analysis and research on management control of brittleness of ventilation system of safety in coal mines[J]. Science and Technology Management Research, 2017, 37(14): 254-259.
[13] 戴建兵,王磊.特大城市重大突发性公共卫生风险防治研究[J].科研管理,2020,41(8):229-239. DAI Jianbing, WANG Lei. A research on prevention and control of major emergent public health risks in megacities[J]. Scientific Research Management, 2020, 41(8): 229-239.
[14] 王家峰.重大突发公共卫生事件的风险及其治理—研究的诸领域及其现状评估[J].深圳社会科学,2021,4(3):15-28. WANG Jiafeng. The risk governance of major public health emergencies: a systematic review of the research fields[J]. Social Sciences in Shenzhen, 2021, 4(3): 15-28.
[15] 韩帅,陈红,龙如银.煤矿群组共生系统:安全共生机理与优化路径[J].系统管理学报,2020,29(4):721. HAN Shuai, CHEN Hong, LONG Ruyin. Coal mine group symbiotic system: mechanism and optimization path of safety symbiosis[J]. Journal of Systems & Management, 2020, 29(4): 721.
-
期刊类型引用(9)
1. 吴晓春. 精确人员定位感应一体化识别卡的设计与实现. 化工自动化及仪表. 2025(02): 259-263+268 . 百度学术
2. 胡亮. 基于电力载波通信的精确定位读卡器设计. 化工自动化及仪表. 2025(02): 283-288 . 百度学术
3. 戴剑波. 基于国产芯片的矿车车皮精确定位标识卡. 煤矿安全. 2024(11): 222-226 . 本站查看
4. 温贤培. 煤矿现场人员二维精确定位方法. 煤矿安全. 2023(01): 225-229 . 本站查看
5. 樊启祥,林鹏,谢亮,刘元达,朱强,李果,辜斌,魏鹏程. 水电工程复杂场景施工资源定位管理技术研究. 水力发电学报. 2022(02): 113-124 . 百度学术
6. 陈杰. 智慧矿山安全防控多系统井下融合与应急联动技术研究. 煤矿安全. 2022(05): 99-105 . 本站查看
7. 王恒晓. 基于多源数据融合的煤矿安全态势感知分析平台研究. 煤矿安全. 2022(08): 242-246 . 本站查看
8. 张鹏,周代勇. 基于UWB的洗煤厂定位方法研究. 自动化与仪器仪表. 2022(08): 130-132+137 . 百度学术
9. 白怡明,曾祥玉,李杰,辛凤阳,郭晓松,朱金龙. 基于卡尔曼滤波算法的UWB+IMU组合精确定位系统在选煤厂中的应用. 选煤技术. 2022(05): 85-90 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 81
- HTML全文浏览量: 0
- PDF下载量: 26
- 被引次数: 9