• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

重复采动下陡岩变形破坏特征分析

唐建新, 李伟, 张择靖, 杜维毅, 郑英建

唐建新, 李伟, 张择靖, 杜维毅, 郑英建. 重复采动下陡岩变形破坏特征分析[J]. 煤矿安全, 2022, 53(7): 215-220,226.
引用本文: 唐建新, 李伟, 张择靖, 杜维毅, 郑英建. 重复采动下陡岩变形破坏特征分析[J]. 煤矿安全, 2022, 53(7): 215-220,226.
TANG Jianxin, LI Wei, ZHANG Zejing, DU Weiyi, ZHENG Yingjian. Analysis of deformation and failure characteristics of steep rock under repeated mining[J]. Safety in Coal Mines, 2022, 53(7): 215-220,226.
Citation: TANG Jianxin, LI Wei, ZHANG Zejing, DU Weiyi, ZHENG Yingjian. Analysis of deformation and failure characteristics of steep rock under repeated mining[J]. Safety in Coal Mines, 2022, 53(7): 215-220,226.

重复采动下陡岩变形破坏特征分析

Analysis of deformation and failure characteristics of steep rock under repeated mining

  • 摘要: 针对含软弱夹层的顺层陡岩受地下重复采煤的影响,采用离散元数值软件UDEC模拟陡岩下方缓斜近距离煤层群区段上行开采,分析陡岩的变形破坏特征。研究结果表明:在重复采动过程中,开采不同煤层时,基底岩层的下沉曲线、水平位移曲线、垂直应力曲线以及剪应力曲线的变化趋势基本相同;上煤层开采后,陡岩坡肩卸荷裂缝会向下贯穿软弱夹层,在坡肩处形成危岩体;中、下煤层开采后采动裂隙会继续由上往下向坡体内延伸到基底岩层附近造成陡岩山体断裂;随着重复采动次数的增加,陡岩的变形破坏程度会急剧增大。
    Abstract: In view of the influence of underground repeated mining on the bedding steep rock with weak interlayer, this paper uses the discrete element numerical software UDEC to simulate the upward mining in the gently inclined short-distance coal seam group under the steep rock, and analyzes the deformation and failure characteristics of the steep rock. The results show that the variation trend of subsidence curve, horizontal displacement curve, vertical stress curve and shear stress curve of basement rock is basically the same in the process of repeated mining when different coal seams are mined; the unloading crack of the steep rock slope shoulder will penetrate the weak interlayer downward and form a dangerous rock body at the slope shoulder after the mining of the upper coal seam. After the middle and lower coal seams are mined, the mining fissures will continue to extend from top to bottom into the slope body and near the basement rock layer, resulting in steep rock mountain fracture; with the increase of repeated mining times, the deformation and failure degree of steep rock will increase sharply.
  • [1] 翟栋,张萍.基于无人机倾斜摄影的矿山开采沉陷监测研究[J].能源与环保,2021,43(8):131-136.

    ZHAI Dong, ZHANG Ping. Resarch on mining subsidence monitoring based on UAV tilt photography[J]. China Energy and Environmental Protection, 2021, 43(8): 131-136.

    [2] 桂阿娟.D-InSAR技术和支持向量机算法在矿山开采沉陷监测与预计中的应用可行性研究[J].山东农业大学学报(自然科学版),2020,51(1):159-162.

    GUI Ajuan. Study on the feasible application of D-InSAR technology and support vector machine algorithms in mining subsidence monitoring and forecasting[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2020, 51(1): 159-162.

    [3] 陈元非,王磊,查剑锋.矿山开采沉陷预计与分析[J].煤矿安全,2017,48(1):99-102.

    CHEN Yuanfei, WANG Lei, CHA Jianfeng. Prediction and analysis of mine mining subsidence[J]. Safety in Coal Mine, 2017, 48(1): 99-102.

    [4] 陈银翠,侯耀翟,杨可明.矿山开采沉陷专题信息表达新模式[J].测绘科学,2016,41(6):158-161.

    CHEN Yincui, HOU Yaozhai, YANG Keming. A new expression mode of the mining subsidence thematic information[J]. Science of Surveying and Mapping, 2016, 41(6): 158-161.

    [5] 张天军,羽玥,张磊,等.矿山开采沉陷的FLAC3D数值模拟分析[J].煤炭技术,2018,37(2):11-14.

    ZHANG Tianjun, YU Yue, ZHANG Lei, et al. Numerical simulation analysis of mining subsidence of mine by FLAC3D[J]. Coal Technology, 2018, 37(2): 11-14.

    [6] 王德高.基于FLAC2D的矿山开采沉陷仿真[J].江苏师范大学学报(自然科学版),2017,35(2):7-10.

    WANG Degao. Simulation for the mining subsidence based on FLAC2D[J]. Journal of Jiangsu Normal University (Natural Science Edition), 2017, 35(2): 7-10.

    [7] 苗小芒.煤矿地下开采覆岩与地表移动规律研究[D].淮南:安徽理工大学,2015.
    [8] 尹志明.马桑湾采动滑坡稳定性分析[D].重庆:重庆大学,2010.
    [9] 李威.山区地形对开采沉陷规律的影响研究[D].太原:太原理工大学,2014.
    [10] 李帅.山区部分开采地面变形规律及山坡稳定性分析研究[D].徐州:中国矿业大学,2014.
    [11] 何国清,杨伦,凌赓姊,等.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1991.
    [12] 康建荣.山区采动裂缝对地表移动变形的影响分析[J].岩石力学与工程学报,2008(1):59-64.

    KANG Jianrong. Analysis of effect of fissures caused by underground mining on ground movement and deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2008(1): 59-64.

    [13] 胡青峰,崔希民,袁德宝,等.厚煤层开采地表裂缝形成机理与危害性分析[J].采矿与安全工程学报,2012,29(6):864-869.

    HU Qingfeng, CUI Ximin, YUAN Debao, et al. Formation mechanism of surface cracks caused by thick seam mining and hazard analysis[J]. Journal of Mining & Safety Engineering, 2012, 29(6): 864-869.

    [14] 赵建军,肖建国,向喜琼,等.缓倾煤层采空区滑坡形成机制数值模拟研究[J].煤炭学报,2014,39(3):424-429.

    ZHAO Jianjun, XIAO Jianguo, XIANG Xiqiong, et al. Failure mechanism numerical simulation of mining landslide with gentle bedding coal strata[J]. Journal of China Coal Society, 2014, 39(3): 424-429.

    [15] 孙敬辉,石豫川.重庆甑子岩崩塌落石动力学特征及危险性分区[J].中国地质灾害与防治学报,2019,30(3):6-11.

    SUN Jinghui, SHI Yuchuan. Dynamics and hazard zoning of collapse and rockfall in Zengziyan, Chongqing [J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(3): 6-11.

    [16] 宋波.某边坡崩塌落石运动特征分析[J].工程建设与设计,2017(5):136-138.

    SONG Bo. Analysis of a slope rockfall movement characteristics[J]. Construction & Design for Project, 2017(5): 136-138.

    [17] 宋子贺,李学锋,齐发富,等.露天矿山危岩崩塌事故成因分析[J].广西大学学报(自然科学版),2021,46(1):159-165.

    SONG Zihe, LI Xuefeng, QI Fafu, et al. Analysis of the triggering factors for dangerous rockfall accident in open pit mine[J]. Journal of Guangxi University(Natural Science Edition), 2021, 46(1): 159-165.

    [18] Jia Nan, Cheng Liu, Yi Liu. A Predictive Model of Mining Collapse Extent and Its Application[J]. Advances in Civil Engineering, 2019: 5184287. https://doi.org/10.1155/2019/5184287.
    [19] 梁少岗,刘长星,康惟英,等.韩城矿区山区地表滑移规律分析[J].矿山测量,2018,46(2):61-64.

    LIANG Shaogang, LIU Changxing, KANG Weiying, et al. Analysis on the slip law of mountainous surface in Hancheng Mining Area[J]. Mine Surveying, 2018, 46(2): 61-64.

    [20] Wang L, Yin Y, Huang B, et al. A study of the treatment of a dangerous thick submerged rock mass in the three gorges reservoir area[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(5): 2579.
    [21] Marschalko M, Trˇeslín L. Impact of underground mining to slope deformation genesis at Doubrava Ujala[J].

    Acta Montanistica Slovaca, 2009, 14(3): 232.

    [22] 蓝航,张华兴,姚建国,等.山区地表采动沉陷预计的数值模拟[J].煤炭学报,2007(9):912-916.

    LAN Hang, ZHANG Huaxing, YAO Jianguo, et al. Numerical simulation of mining subsidence prediction of mountain surface[J]. Journal of China Coal Society, 2007(9): 912-916.

    [23] 杜强,徐孟强,汪春桃,等.山区煤矿开采数值模型建立方法研究[J].矿山测量,2017,45(6):19-22.

    DU Qiang, XU Mengqiang, WANG Chuntao, et al. Research on the method of establishing numerical model of the coal mine exploitation in mountain area[J]. Mine Surveying, 2017, 45(6): 19-22.

    [24] 崔剑锋.采煤沉陷区岩质边坡悬臂—断裂失稳破坏模式研究[D].重庆:重庆大学,2014.
    [25] 刘光旭,席建超,戴尔阜,等.中国滑坡灾害承灾体损失风险定量评估[J].自然灾害学报,2014,23(2):39-46.

    LIU Guangxu, XI Jianchao, DAI Erfu, et al. Loss risk assessment of the hazard-affected body of landslides in China[J]. Journal of Natural Disasters, 2014, 23(2): 39-46.

    [26] 代张音.采动顺层岩质斜坡变形破坏机理与相似模拟试验研究[D].重庆:重庆大学,2019.
计量
  • 文章访问数:  30
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 发布日期:  2022-07-19

目录

    /

    返回文章
    返回