基于可控源音频大地电磁法的陷落柱精细探测
Fine detection of collapse columns based on controlled source audio-frequency magnetotelluric method
-
摘要: 以黄玉川煤矿为例,针对矿区地质勘探发现的疑似陷落柱,但尚未明确其发育范围及其含水性问题,依据其地质与地球物理特征,利用可控源音频大地电磁法(CSAMT)对疑似陷落柱进行精细探查,采用二维Occam反演方法进行处理,结合地质资料对地质异常体电性响应特征进行分析,该电性异常存在明显的低阻电性响应特征,最终圈定了地质异常体范围,并且推断该异常为含水陷落柱引起,主要发育于6上#煤层附近到奥灰,在对应6#煤层位置处(深度395 m)直径约30 m,往深部直径增大,后期井下钻探验证了CSAMT探查结果的准确性。
-
关键词:
- 可控源音频大地电磁法 /
- 陷落柱 /
- 精细探测 /
- Occam反演 /
- 富水性
Abstract: Taking Huangyuchuan Coal Mine as the research background, aiming at the problem that the suspected collapse column found in the geological exploration of the mining area has not yet been clear about its development range and water content, based on the geological and geophysical characteristics of the suspected collapse column, this paper adopts controlled source audio magnetotelluric method(CSAMT) to finely investigate the suspected collapse columns and applies the 2D Occam inversion method to finely process the measured data and analyze the electrical response characteristics of the geological anomalies in combination with geological data. The electrical anomaly has obvious characteristics of low resistance electrical response, and finally delineated the geological anomaly and inferred that the anomaly is caused by a water-bearing collapse column. The collapse column is mainly developed in the 6# upper coal seam near the Ordovician limestone, and the diameter is about 30 m at the corresponding 6# coal seam position(depth 395 m), and the diameter increases to the deep. Subsequent underground drilling verified the accuracy of the CSAMT exploration results. -
-
[1] 彭苏萍.我国煤矿安全高效开采地质保障系统研究现状及展望[J].煤炭学报,2020,45(7):2331-2345. PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society, 2020, 45(7): 2331-2345.
[2] 李志超,李连崇,唐春安.煤层底板陷落柱突水过程及其影响因素数值分析[J].煤矿安全,2014,45(10):162-165. LI Zhichao, LI Lianchong, TANG Chunan. Numerical analysis of water inrush process for coal seam floor collapse column and related factors[J]. Safety in Coal Mines, 2014, 45(10): 162-165.
[3] 程久龙,李飞,彭苏萍,等.矿井巷道地球物理方法超前探测研究进展与展望[J].煤炭学报,2014,39(8):1742-1750. CHENG Jiulong, LI Fei, PENG Suping, et al. Research progress and development direction on advanced detection in mine roadway working face using geophysical methods[J]. Journal of China Coal Society, 2014, 39(8): 1742-1750.
[4] 吴守华,周国兴,杨素霞,等.陷落柱地震响应特征分析[J].煤田地质与勘探,2004,32(3):52-54. WU Shouhua, ZHOU Guoxing, YANG Suxia, et al. Analysis for the seismic response characteristics of collapse column[J]. Coal Geology & Exploration, 2004, 32(3): 52-54.
[5] 许玉莹,陈强,常锁亮,等.煤田隐伏陷落柱空间形态地震属性解释方法[J].科学技术与工程,2020,20(27):10996. XU Yuying, CHEN Qiang, CHANG Suoliang, et al. Seismic attribute interpretation methods for spatial form of hidden collapse columns in coalfields[J]. Science Technology and Engineering, 2020, 20(27): 10996.
[6] 原文涛.瞬变电磁法在采空区及陷落柱探测中的应用[J].物探与化探,2012,36(S1):164-167. YUAN Wentao. The application of transient electromagnetic method to the detection of goaf and collapse columns[J]. Geophysical and Geochemical Exploration, 2012, 36(S1): 164-167.
[7] 刘晓波,李艳莉,李磊,等.地震属性和瞬变电磁技术在煤田勘探中的应用[J].石油地球物理勘探,2018, 53(S2):218-223. LIU Xiaobo, LI Yanli, LI Lei, et al. Joint application of seismic attributes and transient electromagnetic data in the coalfield exploration[J]. Oil Geophysical Prospecting, 2018, 53(S2): 218-223.
[8] 宋玉龙,邱浩,程久龙,等.CSAMT法在煤矿采空区探测中的应用[J].煤矿安全,2013,44(2):142-144. SONG Yulong, QIU Hao, CHENG Jiulong, et al. Application of CSAMT method in mine gob detection[J]. Safety in Coal Mines, 2013, 44(2): 142-144.
[9] WANG Ruo, YIN Changchun, WANG Miaoyue, et al. Laterally constrained inversion for CSAMT data interpretation[J]. Journal of Applied Geophysics, 2015, 121: 63-70. [10] WEN Laifu, CHENG Jiulong, LI Fei, et al. Global optimization of controlled source audio-frequency magnetotelluric data with an improved artificial bee colony algorithm[J]. Journal of Applied Geophysics, 2019, 170: 103845. [11] 许洋铖.地面瞬变电磁勘查煤矿水害的能力分析[J].矿业安全与环保,2014,41(5):43-46. XU Yangcheng. Analysis on ability of using ground transient electromagnetic technology to detect coal mine water disaster[J]. Mining Safety & Environmental Protection, 2014, 41(5): 43-46.
[12] 薛国强,潘冬明,于景邨.煤矿采空区地球物理探测应用综述[J].地球物理学进展,2018,33(5):2187. XUE Guoqiang, PAN Dongming, YU Jingcun. Review the applications of geophysical methods for mapping coal-mine voids[J]. Progress in Geophysics, 2018, 33(5): 2187.
[13] 李金铭.地电场与电法勘探[M].北京:地质出版社,2009. [14] 刘云鹤,殷长春.三维频率域航空电磁法反演研究[J].地球物理学报,2013,56(12):4278-4287. LIU Yunhe, YIN Changchun. 3D inversion for frequency-domain HEM data[J]. Chinese Journal of Geophysics, 2013, 56(12): 4278-4287.
[15] 王绪本,陈进超,郭全仕,等.沁水盆地北部煤层气富集区CSAMT勘探试验研究[J].地球物理学报,2013,56(12):4310-4323. WANG Xuben, CHEN Jinchao, GUO Quanshi, et al. Research of the CSAMT exploration mode and experiment for the coalbed methane enrichment region in the north Qinshui basin[J]. Chinese Journal of Geophysics, 2013, 56(12): 4310-4323.
-
期刊类型引用(3)
1. 王新苗. 基于瓦斯抽采定向钻孔的地质建模研究与应用. 煤炭与化工. 2024(06): 107-111 . 百度学术
2. 史小卫,孙麒涵,陈俊侠,林萌,吴会永,王洪建. 首山一矿水平井水力压裂应力阴影效应及裂缝演化机理. 能源与环保. 2024(08): 14-21 . 百度学术
3. 石磊,武超,吕冬,卢卫永,王鹏,孙耀辉. 基于能量耗散理论的深部巷道围岩松动圈范围分析. 煤矿安全. 2024(10): 150-157 . 本站查看
其他类型引用(0)
计量
- 文章访问数: 42
- HTML全文浏览量: 0
- PDF下载量: 16
- 被引次数: 3