煤层过沟开采覆岩破坏特征及地表水入渗规律研究
Study on overburden failure characteristics and surface water infiltration law of coal seam mining through gully
-
摘要: 为分析煤层过沟开采覆岩破坏特征及地表水入渗规律,选取过沟开采典型工作面为研究对象,基于工程地质条件及岩层物理力学性质,采用UDEC建立了覆岩破坏数值模型,研究了煤层过沟开采覆岩破坏特征;数值计算得到导水断裂带高度为230~250 m,实测导水断裂带高度为225~245 m,两者结果较吻合;通过提取覆岩采动裂隙并导入COMSOL,构建了煤层过沟开采地表水入渗数值计算模型,分析了地表水沿采动裂隙入渗至工作面的规律。结果显示:当工作面推采200、250、300 m时,导水断裂带沟通地表,地表水沿裂隙入渗至工作面,稳定后的水量分别为10.4、14.3、19.7 m3/h;以工作面推采300 m为例,对比分析了数值计算与现场实测的工作面稳定水量,两者所得结果相差较小。Abstract: In order to analyze the overburden failure characteristics and surface water infiltration law of coal seam mining through gully, the typical working face of coal seam mining through gully is selected as the research object. Based on the engineering geological conditions of typical working face and the physical and mechanical properties of strata, the numerical model of actual strata is established by UDEC, and the overburden failure characteristics of coal seam mining through gully are studied. The results show that the height of water-conductive fractured zone is 230-250 m by numerical calculation and 225-245 m by field measurement. By extracting mining fissures of overburden and introducing them into COMSOL, the numerical calculation model of surface water infiltration after coal seam mining is constructed, and the law of surface water infiltration to the working face along the mining fissures is analyzed. The calculation results show that when the working face is advanced to 200, 250 and 300 m, the water-conductive fractured zone connects with the surface, and the surface water infiltrates into the working face along the fracture, and the stable water quantity is 10.4, 14.3 and 19.7 m3/h respectively. Finally, taking the working face advancing to 300 m as an example, the stable water quantity of working face obtained by numerical calculation and field measurement is compared and analyzed, and the difference between the two results is small.
-
-
[1] 郭文兵,白二虎,赵高博.高强度开采覆岩地表破坏及防控技术现状与进展[J].煤炭学报,2020,45(2): 509-523. GUO Wenbing, BAI Erhu, ZHAO Gaobo. Current status and progress on overburden and surface damage and prevention technology of high-intensity mining[J]. Journal of China Coal Society, 2020, 45(2): 509-523.
[2] 范立民,向茂西,彭捷,等.毛乌素沙漠与黄土高原接壤区泉的演化分析[J].煤炭学报,2018,43(1):207. FAN Limin, XIANG Maoxi, PENG Jie, et al. Evolution analysis on springs in contiguous area of Maowusu desert and loess plateau[J]. Journal of China Coal Society, 2018, 43(1): 207.
[3] 范立民.论西北大型煤炭基地地下水监测工程问题[J].中国煤炭地质,2018,30(6):87-91. FAN Limin. On northwest China large coal bases groundwater monitoring engineering issues[J]. Coal Geology of China, 2018, 30(6): 87-91.
[4] 陈伟.陕北黄土沟壑径流下采动水害机理与防控技术研究[D].徐州:中国矿业大学, 2015. [5] ZHU Ge, WU X, YU S, et al. Surface water control for mining thick, relatively shallow coal seams in the loess area of Western China[J]. Mine Water Environ, 2018, 37(3): 442-455. [6] ZHU TE, LI WP, WANG QQ, et al. Study on the height of the mining-induced water-conducting fracture zone under the Q2l loess cover of the Jurassic coal seam in Northern Shaanxi, China[J]. Mine Water Environ, 2020, 39: 57-67. [7] 钱鸣高,许家林.煤炭开采与岩层运动[J].煤炭学报,2019,44(4):973-984. QIAN Minggao, XU Jialin. Behaviors of strata movement in coal mining[J]. Journal of China Coal Society, 2019, 44(4): 973-984.
[8] 范立民,向茂西,彭捷,等.西部生态脆弱矿区地下水对高强度采煤的响应[J].煤炭学报,2016,41(11):2672-2678. FAN Limin, XIANG Maoxi, PENG Jie, et al. Groundwater response to intensive mining in ecologically fragile area[J]. Journal of China Coal Society, 2016, 41(11): 2672-2678.
[9] 范立民,李成,陈建平,等.矿产资源高强度开采区地质灾害与防治技术[M].北京:科学出版社,2016. [10] 范立民,马雄德,蒋辉,等.西部生态脆弱矿区矿井突水溃沙危险性分区[J].煤炭学报,2016,41(3):531. FAN Limin, MA Xiongde, JIANG Hui, et al. Risk evaluation on water and sand inrush in ecologically fragile coal mine[J]. Journal of China Coal Society, 2016, 41(3): 531.
[11] 黄庆享.浅埋煤层保水开采岩层控制研究[J].煤炭学报,2017,42(1):50-55. HUANG Qingxiang. Research on roof control of water conservation mining in shallow seam[J]. Journal of China Coal Society, 2017, 42(1): 50-55.
[12] 黄庆享,张文忠.浅埋煤层条带充填隔水岩组力学模型分析[J].煤炭学报,2015,40(5):973-978. HUANG Qingxiang, ZHANG Wenzhong. Mechanical model of water resisting strata group in shallow seam strip-filling mining[J]. Journal of China Coal Society, 2015, 40(5): 973-978.
[13] 王新丰,高明中,李隆钦.深部采场采动应力、覆岩运移以及裂隙场分布的时空耦合规律[J].采矿与安全工程学报,2016,33(4):604-610. WANG Xinfeng, GAO Mingzhong, LI Longqin. Spatiotemporal coupling law of mining pressure,strata movement and fracture field distribution in deep stope[J]. Journal of Mining & Safety Engineering, 2016, 33(4): 604-610.
[14] 贾后省,马念杰,赵希栋.浅埋薄基岩采煤工作面上覆岩层纵向贯通裂隙“张开-闭合”规律[J].煤炭学报,2015,40(12):2787-2793. JIA Housheng, MA Nianjie, ZHAO Xidong.“Open-close” law of longitudinal transfixion cracks in shallow buried coal face with thin bedrock[J]. Journal of China Coal Society, 2015, 40(12): 2787-2793.
[15] 杨达明,郭文兵,谭毅,等.高强度开采覆岩岩性及其裂隙特征[J].煤炭学报,2019,44(3):786-795. YANG Daming, GUO Wenbing, TAN Yi, et al. Lithology and fissure characteristics of overburden in high-intensity mining[J]. Journal of China Coal Society, 2019, 44(3): 786-795.
[16] 马立强,孙海,王飞,等.浅埋煤层长壁工作面保水开采地表水位变化分析[J].采矿与安全工程学报,2014,31(2):232-235. MA Liqiang, SUN Hai, WANG Fei, et al. Analysis of the ground water level change of aquifer-protective mining in longwall coalface for shallow seam[J]. Journal of Mining & Safety Engineering, 2014, 31(2): 232-235.
[17] 任艳芳,宁宇,齐庆新.浅埋深长壁工作面覆岩破断特征相似模拟[J].煤炭学报,2013,38(1):61-66. REN Yanfang, NING Yu, QI Qingxin. Physical analogous simulation on the characteristics of overburden breakage at shallow long-wall coalface[J]. Journal of China Coal Society, 2013, 38(1): 61-66.
[18] 黄炳香,刘长友,许家林.采动覆岩破断裂隙的贯通度研究[J].中国矿业大学学报,2010,39(1):45-49. HUANG Bingxiang, LIU Changyou, XU Jialin. Research on through degree of overlying strata fracture fissure induced by mining[J]. Journal of China University of Mining & Technology, 2010, 39(1): 45-49.
[19] 黄炳香,刘长友,许家林.采场小断层对导水裂隙高度的影响[J].煤炭学报,2009,34(10):1316-1321. HUANG Bingxiang, LIU Changyou, XU Jialin. Effect of little fault in working face on water conducted fissure height[J]. Journal of China Coal Society, 2009, 34(10): 1316-1321.
[20] 黄炳香,刘锋,王云祥,等.采场顶板尖灭隐伏逆断层区导水裂隙发育特征[J].采矿与安全工程学报,2010,27(3):377-381. HUANG Bingxiang, LIU Feng, WANG Yunxiang, et al. Development of water conductive fissures in hidden reversed fault in thinning-out overlying strata of a stope[J]. Journal of Mining & Safety Engineering, 2010, 27(3): 377-381.
[21] WU Q, FAN ZL, ZHANG ZW, et al. Evaluation and zoning of groundwater hazards in Pingshuo No.1 underground coal mine, Shanxi Province, China[J]. Hydrogeology Journal, 2014, 22(7): 1693-1705. [22] WU Q, LIU YZ, ZHOU WF, et al. Evaluation of water inrush vulnerability from aquifers overlying coal seams in the Menkeqing coal mine, China[J]. Mine Water Environ, 2014, 34(3): 258-269. -
期刊类型引用(6)
1. 李延军. 沟壑区浅埋煤层开采覆岩运动演化致灾特征. 采矿与安全工程学报. 2024(02): 315-325 . 百度学术
2. 李亚军,王海军,尹家宽,吴艳,解鹏. 浅埋煤层地表隐蔽致灾因素普查技术. 能源与环保. 2024(06): 13-18 . 百度学术
3. 张引. 强采覆岩破损及渗透性演化规律研究. 煤炭与化工. 2024(08): 27-31 . 百度学术
4. 赵国宏. 伊犁矿区琼博洛沟段全厚开采覆岩变形破坏发育规律研究. 当代化工研究. 2024(19): 76-78 . 百度学术
5. 曹琰波,范文,陶宜权,程光,刘魁,彭敏. 榆神府矿区双煤层开采覆岩破坏及地面沉降特征研究. 煤矿安全. 2023(07): 205-213 . 本站查看
6. 解鹏,王海军,尹家宽,吴艳,李亚军,韩珂. 青龙寺煤矿顶板隐蔽致灾因素特征分析. 中国矿业. 2023(S2): 229-236 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 50
- HTML全文浏览量: 0
- PDF下载量: 26
- 被引次数: 7