水浸风干过程对煤自燃特性影响的实验研究
Experimental study on influence of water immersion and air-drying process on coal spontaneous combustion characteristics
-
摘要: 为揭示水浸风干过程对煤自燃的宏观特性与微观结构变化的影响规律,实验研究了不黏煤原始煤样和长期浸水风干煤样的低温氧化特性,在不同浸水时长和粒径大小的条件下分析其氧化升温过程中的气体生成量及表观活化能,通过含氧官能团相对含量的变化规律及气体产生机理的分析,诠释了水浸过程对煤自燃氧化特性的影响方式。结果表明:CO和CO2是煤氧化反应的主要气体产物,与原煤相比,经过90、180 d浸水后再风干的煤样,升温过程中的氧化气体生成量更大,在加速氧化阶段活化能分别降低2.72 、35.74 kJ/mol,说明随着浸水时间的增加,煤的自燃倾向性会相应增强;—COOH、C=O分别是产生CO2和CO的主要来源,水分对含氧络合物的形成起着重要的催化作用,导致水浸煤中含氧官能团的相对含量高于原煤,因而使水浸煤氧化性增强,并能产生更多的CO和CO2。Abstract: In order to find out the influence of water immersion and air drying process on the macroscopic characteristics and microstructure changes of coal spontaneous combustion, the low-temperature oxidation characteristics of non-caking raw coal and long-term soaked and air-dried coal were experimentally studied, and the effects of soaking time and particle size on the gas generation and activation energy of coal during the oxidation heating process were analyzed. As an explanation in support of the influence of water immersion on the spontaneous combustion and oxidation characteristics of coal, the variation of relative content of oxygen-containing functional groups and the mechanism of gas generation were analyzed. The results indicated that CO and CO2 are the main components of the gas generated by coal oxidation reaction. Compared with raw coal, the gas production of coal samples after 90 days and 180 days soaking and air-drying is higher in the process of oxidation heating. In the accelerated oxidation stage, the activation energy decreased by 2.72 kJ/mol and 35.74 kJ/mol, respectively, which indicates that the coal sample after long-term soaking has a higher spontaneous combustion tendency than that after short-term soaking. Water plays a promoting role in the formation of oxygen-containing complexes, resulting in the relative content of oxygen-containing functional groups in soaked coal being higher than that of raw coal. Meanwhile, -COOH and C=O are the main sources of CO2 and CO respectively, which could explain the phenomenon of higher concentration of CO2 and CO produced by soaked coal than that by raw coal.
-
-
[1] 王继仁,张勋,王钰博,等.多层采空区流场多点调控反馈补偿整体平衡理论[J].煤炭学报,2014,39(8):1441-1445. WANG Jiren, ZHANG Xun, WANG Yubo, et al. Theory of multipoint pressure balance in multilayer goaf by pressure feedback and compensation[J]. Journal of China Coal Society, 2014, 39(8): 1441-1445.
[2] 徐会军,刘江,徐金海.浅埋薄基岩厚煤层综放工作面采空区漏风数值模拟[J].煤炭学报,2011,36(3):435-441. XU Huijun, LIU Jiang, XU Jinhai. Numerical simulation research on gob air leakage of shallow-buried thin bedrock thick coal seam with fully-mechanized top coal caving technology[J]. Journal of China Coal Society, 2011, 36(3): 435-441.
[3] 秦波涛,鲁义,殷少举,等.近距离煤层综放面瓦斯与煤自燃复合灾害防治技术研究[J].采矿与安全工程学报,2013,30(2):311-316. QIN Botao, LU Yi, YIN Shaoju, et al. Prevention and control technique of complex disaster caused by gas and spontaneous combustion for fully-mechanized sublevel caving face in close-distance seams[J]. Journal of Mining & Safety Engineering, 2013, 30(2): 311-316.
[4] SONG S, QIN B, XIN H, et al. Exploring effect of water immersion on the structure and low-temperature oxidation of coal: A case study of Shendong long flame coal, China[J]. Fuel, 2018, 234: 732-737. [5] 秦波涛,宋爽,戚绪尧,等.浸水过程对长焰煤自燃特性的影响[J].煤炭学报,2018,43(5):1350-1357. QIN Botao, SONG Shuang, QI Xuyao, et al. Effect of soaking process on spontaneous combustion characteristics of long-flame coal[J]. Journal of China Coal Society, 2018, 43(5): 1350-1357.
[6] CLEMENS A H, MATHESON T W. The role of moisture in the self-heating of low-rank coals[J]. Fuel, 1996, 75: 891-895. [7] XU T, WANG D M, HE Q L. The study of the critical moisture content at which coal has the most high tendency to spontaneous combustion[J]. International Journal of Coal Preparation and Utilization, 2013, 33(3): 117-127. [8] BEAMISH B B, HAMILTON G R. Effect of moisture content on the R70 self-heating rate of Callide coal[J]. International Journal of Coal Geology, 2005, 64(1/2): 133-138. [9] WANG H, DLUGOGORSKI B Z, KENNEDY E M. Role of inherent water in low-temperature oxidation of coal[J]. Combustion Science and Technology, 2003, 175(2): 253-270. [10] KADIOGLU Y, VARAMAZ M. The effect of moisture content and air-drying on spontaneous combustion characteristics of two Turkish lignitesa[J]. Fuel, 2003, 82(13): 1685-1693. [11] ZHANG Z, YAN K. Molecular dynamics simulation of oxygen diffusion in dry and water-containing brown coal[J]. Molecular Physics, 2011, 109(19): 2367-2374. [12] 戴广龙.煤低温氧化过程中自由基浓度与气体产物之间的关系[J].煤炭学报,2012,37(1):122-126. DAI Guanglong. Relation between free radicals concentration and gas products in process of coal low temperature oxidation[J]. Journal of China Coal Society, 2012, 37(1): 122-126.
[13] 邓军,赵婧昱,张嬿妮,等.陕西侏罗纪煤二次氧化自燃特性试验研究[J].中国安全科学学报,2014,24(1):34-40. DENG Jun, ZHAO Jingyu, ZHANG Yanni, et al. Experimental study on spontaneous combustion characteristics of secondary oxidation of Jurassic coal[J]. China Safety Science Journal, 2014, 24(1): 34-40.
[14] ZHANG Y, CHEN L, ZHAO J, et al. Evaluation of the spontaneous combustion characteristics of coal of different metamorphic degrees based on a temperature-programmed oil bath experimental system[J]. Journal of Loss Prevention in the Process Industries, 2019, 60:17-27. [15] QI G, WANG D, ZHENG K, et al. Kinetics characteristics of coal low-temperature oxidation in oxygen-depleted air[J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 224-231. [16] 秦波涛,王德明,李增华,等.以活化能的观点研究煤炭自燃机理[J].中国安全科学学报,2005,15(1):11-13. QIN Botao, WANG Deming, LI Zenghua, et al. Study on the mechanism of coal spontaneous combustion with activated energy view[J]. China Safty Science Journal, 2005, 15(1): 11-13.
[17] 谢克昌.煤的结构与反应性[M].北京:科学出版社,2002. [18] 仲晓星,王德明,尹晓丹.基于程序升温的煤自燃临界温度测试方法[J].煤炭学报,2010,35(S):128. ZHONG Xiaoxing, WANG Deming, YIN Xiaodan. Test method of critical temperature of coal spontaneous combustion based on the temperature programmed experiment[J]. Journal of China Coal Society, 2010, 35(S): 128-131.
[19] WANG H, DLUGOGORSKI B Z, KENNEDY E M. Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism and kinetic modelling[J]. Progress in Energy and Combustion Science, 2003, 29(6): 487-513. [20] XU T. Heat effect of the oxygen-containing functional groups in coal during spontaneous combustion processes[J]. Advanced Powder Technology, 2017, 28(8): 1841-1848. [21] DENG J, LI B, XIAO Y, et al. Combustion properties of coal gangue using thermogravimetry Fourier transform infrared spectroscopy[J]. Applied Thermal Engineering, 2017, 116: 244-252. [22] QI X, WANG D, XIN H, et al. An in situ testing method for analyzing the changes of active groups in coal oxidation at low temperatures[J]. Spectroscopy Letters, 2014, 47(7): 495-503. [23] LI J, LI Z, YANG Y, et al. Study on oxidation and gas release of active sites after low-temperature pyrolysis of coal[J]. Fuel, 2018, 233:237-246. [24] ZHANG Y, WANG J, XUE S, et al. Kinetic study on changes in methyl and methylene groups during low-temperature oxidation of coal via in-situ FTIR[J]. International Journal of Coal Geology, 2016, 154/155: 155-164. [25] 李增华.煤炭自燃的自由基反应机理[J].中国矿业大学学报,1996,25(3):111-114. LI Zenghua. Mechanism of free radical reactions in spontaneous combustion of coal[J]. Journal of China University of Mining & Technology, 1996, 25(3): 111.
[26] 王德明.煤氧动力学理论及应用[M].北京:科学出版社,2012. [27] WANG D, HE R, WANG B, et al. Effects of alkali-oxygen oxidation temperature on the structures and combustion properties of Shengli lignite[J]. RSC Advances, 2017, 7(32): 19833-19840. -
期刊类型引用(7)
1. 葛俊岭,解树亮,赵滨,夏鸣泽,王刚. 浸水煤表面结构演化与自然发火指标实验研究. 山东科技大学学报(自然科学版). 2024(03): 21-30 . 百度学术
2. 黄学满,卓辉,樊淑兰,饶吉来. 粒径对刘庄矿煤自燃特性的影响研究. 矿业安全与环保. 2024(06): 79-86 . 百度学术
3. 赵海波. 外在水分对长焰煤孔隙结构及自燃特性的影响研究. 煤矿安全. 2023(05): 205-210 . 本站查看
4. 易欣,张敏,邓寅,施欣甫,王兴,李煜晗. 淮南矿区煤自燃指标气体及特征参数. 西安科技大学学报. 2023(03): 457-465 . 百度学术
5. 王东民,闫建党,王鹏斐,王晓乐,蔡国斌,黄渊,郑学召. 基于复合指标气体法的水浸清洁煤体自燃预警预报研究. 煤炭技术. 2023(10): 129-133 . 百度学术
6. 刘恒. 水浸作用对煤孔隙结构及吸附/解吸特征的影响. 山西焦煤科技. 2023(11): 34-38 . 百度学术
7. 吴义泉,舒森辉,李晟立,张雷林,高鹏永. 基于不同含水率气煤的低温氧化实验研究. 矿业安全与环保. 2023(06): 72-76+84 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 93
- HTML全文浏览量: 0
- PDF下载量: 19
- 被引次数: 10