煤矿井下煤层顶板分段加砂压裂增渗技术与应用

    董润平, 张俭, 闫志铭, 刘乐, 王晨阳

    董润平, 张俭, 闫志铭, 刘乐, 王晨阳. 煤矿井下煤层顶板分段加砂压裂增渗技术与应用[J]. 煤矿安全, 2022, 53(5): 73-80.
    引用本文: 董润平, 张俭, 闫志铭, 刘乐, 王晨阳. 煤矿井下煤层顶板分段加砂压裂增渗技术与应用[J]. 煤矿安全, 2022, 53(5): 73-80.
    DONG Runping, ZHANG Jian, YAN Zhiming, LIU Le, WANG Chenyang. Technology and application of sublevel sand fracturing and permeability enhancement of coal seam roof in underground coal mine[J]. Safety in Coal Mines, 2022, 53(5): 73-80.
    Citation: DONG Runping, ZHANG Jian, YAN Zhiming, LIU Le, WANG Chenyang. Technology and application of sublevel sand fracturing and permeability enhancement of coal seam roof in underground coal mine[J]. Safety in Coal Mines, 2022, 53(5): 73-80.

    煤矿井下煤层顶板分段加砂压裂增渗技术与应用

    Technology and application of sublevel sand fracturing and permeability enhancement of coal seam roof in underground coal mine

    • 摘要: 为解决碎软煤层水力压裂裂隙易闭合、压裂不均匀、压裂效果差、瓦斯抽采困难等问题,自主研发了定向喷砂射孔装备及工艺技术、水力加砂分段压裂装备及工艺技术,提出煤层顶板定向长钻孔“定向喷砂射孔+分段加砂压裂”增加煤层透气性的思路,并在阳泉矿区新景煤矿3#煤层顶板开展工程试验,形成了煤层顶板定向长钻孔水力加砂分段压裂工艺技术。试验结果表明:成功实现了609 m煤层顶板长钻孔分6段加砂压裂,施工排量超过1 m3/min,单段注液量超过150 m3,累计注液量967 m3;压裂孔底至孔口破裂压力呈逐渐减小,最大破裂压力为29.6 MPa。注入核桃壳砂比例最高达到3%,单段最大注入核桃壳砂2.41 t,累积加入13.11 t。统计分析60 d瓦斯抽采数据,平均抽采瓦斯体积分数60.6%;单日最高瓦斯抽采纯量达到1 381.5 m3,抽采瓦斯体积分数较顺层钻孔和千米钻孔分别提高了8.81倍和3.96倍;百米钻孔抽采纯量分别提高了21.4倍和7.28倍,取得了很好的增透效果。
      Abstract: In order to solve the problems of hydraulic fracturing fractures easy to close, uneven fracturing, poor fracturing effect and difficult gas drainage in broken soft coal seam, combinning with the current mature drilling technology, self-developed directional sand blasting perforation equipment and process technology, hydraulic sand fracturing equipment and process technology, the idea of “directional sand blasting perforation + staged sand fracturing” for directional long drilling of coal seam roof to increase coal seam permeability was proposed, and the engineering test has been carried out in Xinjing Coal Mine 3# coal seam roof in Yangquan Mining Area. The hydraulic sand fracturing technology of long directional drilling in coal seam roof is formed. The test results show that the long drilling hole in the roof of 609 m coal seam is divided into 6 sections for sand fracturing, the construction displacement is more than 1 m3/min, the single section liquid injection is more than 150 m3, and the cumulative liquid injection is 967 m3; the fracture pressure from the hole bottom to the orifice decreases gradually, and the maximum fracture pressure is 29.6 MPa. The highest proportion of walnut shell sand injected is 3%, the maximum injection of walnut shell sand in a single section is 2.41 t, and the cumulative addition is 13.11 t. Statistical analysis of 60 d gas drainage data shows that the average gas drainage concentration is 60.6%; the maximum net amount of gas drainage in a single day reaches 1 381.5 m3. The gas drainage concentration is 8.81 times and 3.96 times higher than that of bedding hole and kilometer hole respectively; the net extraction volume of 100 m borehole was increased by 21.4 times and 7.28 times respectively, and a good antireflection effect was obtained.
    • [1] 贾爱林,何东博,位云生,等.未来十五年中国天然气发展趋势预测[J].天然气地球科学,2020,32(1):1.

      JIA Ailin, HE Dongbo, WEI Yunsheng, et al. Predictions on natural gas development trend in China for the next fifteen years[J]. Natural Gas Geoscience, 2021, 32(1): 1.

      [2] 张建民,李全生,张勇,等.煤炭深部开采界定及采动响应分析[J].煤炭学报,2019,44(5):1314-1325.

      ZHANG Jianmin, LI Quansheng, ZHANG Yong, et al. Definition of deep coal mining and response analysis[J]. Journal of China Coal Society, 2019, 44(5): 1314-1325.

      [3] 袁亮.我国深部煤与瓦斯共采战略思考[J].煤炭学报,2016,41(1):1-6.

      YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society, 2016, 41(1): 1-6.

      [4] 袁亮,林柏泉,杨威.我国煤矿水力化技术瓦斯治理研究进展及发展方向[J].煤炭科学技术,2015,43(1):45-49.

      YUAN Liang, LIN Baiquan, YANG Wei. Research progress and development direction of gas control with mine hydraulic technology in China coal mine[J]. Coal Science and Technology, 2015, 43(1): 45-49.

      [5] 刘见中,孙海涛,雷毅,等.煤矿区煤层气开发利用新技术现状及发展趋势[J].煤炭学报,2020,45(1):258-267.

      LIU Jianzhong, SUN Haitao, LEI Yi, et al. Current situation and development trend of coalbed methane development and utilization technology in coal mine area[J]. Journal of China Coal Society, 2020, 45(1): 258.

      [6] 李小平,梁文勖,张阳.密集顺层钻孔预抽在低透气性煤层的应用[J].煤炭技术,2017,36(3):190-192.

      LI Xiaoping, LIANG Wenxu, ZHANG Yang. Application of gas drainage technology of dense boreholes along low permeability coal seam[J]. Coal Technology, 2017, 36(3): 190-192.

      [7] 陈玉涛,秦江涛,谢文波.水力压裂和深孔预裂爆破联合增透技术的应用研究[J].煤矿安全,2018,49(8):141-144.

      CHEN Yutao, QIN Jiangtao, XIE Wenbo. Application study on hydraulic fracturing and deep hole re-splitting blasting joint permeability improvement technology[J]. Safety in Coal Mines, 2018, 49(8): 141-144.

      [8] 魏国营,郭中海,谢伦荣,等.煤巷掘进水力掏槽防治煤与瓦斯突出技术[J].煤炭学报,2007,32(2):172.

      WEI Guoying, GUO Zhonghai, XIE Lunrong, et al. Hydraulic slotting technology to prevent coal and gas outburst during heading excavation[J]. Journal of China Coal Society, 2007, 32(2): 172.

      [9] 林柏泉,高亚斌,沈春明.基于高压射流割缝技术的单一低透煤层瓦斯治理[J].煤炭科学技术,2013,41(9):53-57.

      LIN Baiquan, GAO Yabin, SHEN Chunming. Gas control of single low permeability coal seam based on high-pressure jet slotting technology[J]. Coal Science and Technology, 2013, 41(9): 53-57.

      [10] 李晓红,卢义玉,赵瑜,等.高压脉冲水射流提高松软煤层透气性的研究[J].煤炭学报,2008,33(12):1386-1390.

      LI Xiaohong, LU Yiyu, ZHAO Yu, et al. Study on improving the permeability of soft coal seam with high pressure pulsed water jet[J]. Journal of China Coal Society, 2008, 33(12): 1386-1390.

      [11] 刘东,刘文.水力冲孔压裂卸压增透抽采瓦斯技术研究[J].煤炭科学技术,2019,47(3):136-141.

      LIU Dong, LIU Wen. Research on gas extraction technology: hydraulic stamping and hydro fracture to pressure relief and permeability improvement[J]. Coal Science and Technology, 2019, 47(3): 136-141.

      [12] 孙四清,张群,闫志铭,等.碎软低渗高突煤层井下长钻孔整体水力压裂增透工程实践[J].煤炭学报,2017,42(9):2337-2344.

      SUN Siqing, ZHANG Qun, YAN Zhiming, et al. Practice of permeability enhancement through overall hydraulic fracturing of long hole in outburst-prone soft crushed coal seam with low permeability[J]. Journal of China Coal Society, 2017, 42(9): 2337-2344.

      [13] 李贤忠,林柏泉,翟成,等.单一低透煤层脉动水力压裂脉动波破煤岩机理[J].煤炭学报,2013,38(6):918-923.

      LI Xianzhong, LIN Baiquan, ZHAI Cheng, et al. The mechanism of breaking coal and rock by pulsating pressure wave in single low permeability seam[J]. Journal of China Coal Society, 2013, 38(6): 918-923.

      [14] HU Qingting, LIU Le, LI Quangui, et al. Experimental investigation on crack competitive extension during hydraulic fracturing in coal measures strata[J]. Fuel,2020, 265: 117003.
      [15] 张群,葛春贵,李伟,等.碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J].煤炭学报,2018,43(1):150-159.

      ZHANG Qun, GE Chungui, LI Wei, et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata-in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society, 2018, 43(1): 150-159.

      [16] 张俭.碎软低透突出煤层定向长钻孔整体水力压裂高效增透技术[J].中国煤炭,2018,44(7):101.

      ZHANG Jian. High effective technology through overall hydraulic fracturing of long directional borehole in crushed and soft coal seam with low permeability and outburst potential[J]. China Coal, 2018, 44(7): 101.

      [17] 贾秉义,陈冬冬,吴杰,等.煤矿井下顶板梳状长钻孔分段压裂强化瓦斯抽采实践[J].煤田地质与勘探,2020,49(2):1-7.

      JIA Bingyi, CHEN Dongdong, WU Jie, et al. Practice of gas enhanced extraction by section fracturing with comb shaped long hole in coal mine roof[J]. Coal Geology & Exploration, 2020, 49(2): 1-7.

      [18] 郑凯歌.碎软低透煤层底板梳状长钻孔分段水力压裂增透技术研究[J].采矿与安全工程学报,2020,37(2):272-281.

      ZHENG Kaige. Permeability improving technology by sectional hydraulic fracturing for comb-like long drilling in floor of crushed and soft coal seam with low permeability[J]. Journal of Mining & Safety Engineering, 2020, 37(2): 272-281.

      [19] 陈冬冬,孙四清,张俭,等.井下定向长钻孔水力压裂煤层增透技术体系与工程实践[J].煤炭科学技术,2020,48(10):84-89.

      CHEN Dongdong, SUN Siqing, ZHANG Jian, et al. Technical system and engineering practice of coal seam permeability improvement through underground directional long borehole hydraulic fracturing[J]. Coal Science and Technology, 2020, 48(10): 84-89.

      [20] JIANG Zhizhong, LI Quangui, HU Qianting, et al. Underground microseismic monitoring of a hydraulic fracturing operation for CBM Reservoirs in a coal mine[J]. Energy Science & Engineering, 2019, 7(3): 986-999.
      [21] 王晓光.煤层水力压裂应力演化机制及应用研究[D].重庆:重庆大学,2019.
    • 期刊类型引用(6)

      1. 梁锋,田军,孙功帅. 有机酸与无机酸对煤体力学性质的影响对比研究. 山东煤炭科技. 2024(01): 94-99 . 百度学术
      2. 范红斌. “定向长钻孔+分支孔”瓦斯抽采钻孔分段水力压裂技术研究与应用. 煤炭科技. 2024(03): 183-188+192 . 百度学术
      3. 耿宁,贾秉义,纪文涛. 碎软低渗煤层穿层钻孔水力压裂瓦斯抽采技术研究. 能源与环保. 2023(12): 121-126 . 百度学术
      4. 邓敢博. 循环往复式水力压裂技术在顺煤层瓦斯治理中的应用. 能源与环保. 2021(05): 18-23 . 百度学术
      5. 覃木广. 井下煤层水力压裂理论与技术研究现状及发展方向. 中国矿业. 2021(06): 112-119 . 百度学术
      6. 牟全斌,闫志铭,张俭. 煤矿井下定向长钻孔水力压裂瓦斯高效抽采技术. 煤炭科学技术. 2020(07): 296-303 . 百度学术

      其他类型引用(2)

    计量
    • 文章访问数: 
    • HTML全文浏览量:  0
    • PDF下载量: 
    • 被引次数: 8
    出版历程
    • 发布日期:  2022-05-19

    目录

      /

      返回文章
      返回