煤层气储层复杂裂缝导流能力影响因素研究
Influencing factors of conductivity of complex fractures in coalbed methane reservoir
-
摘要: 煤层气储层水力压裂施工后容易形成比较复杂的裂缝网络,为了深入研究复杂裂缝导流能力的影响因素,使用改进型支撑剂充填层裂缝导流能力测试仪分别评价了支撑剂粒径、铺砂浓度、煤岩弹性模量、煤粉含量以及压裂液类型对煤层气储层复杂裂缝导流能力的影响。结果表明:在相同的铺砂质量分数条件下,“E”型裂缝的导流能力明显大于“T”型裂缝和单一裂缝,即裂缝形态越复杂,裂缝条数越多,导流能力值越大;陶粒作为支撑剂时的裂缝导流能力明显大于覆膜砂和石英砂;铺砂浓度越高、煤岩弹性模量越大,裂缝的导流能力越大;煤粉和压裂液对裂缝导流能力的影响较大,煤粉含量越高,对裂缝导流能力的损害率越高,胍胶压裂液对裂缝导流能力的损害程度最大,清洁压裂液次之,活性水压裂液最小;另外,裂缝形态越复杂,煤粉和压裂液对裂缝导流能力的损害程度越严重。Abstract: Complex fracture network is easy to form after hydraulic fracturing in coalbed methane reservoir. In order to study the influencing factors of complex fracture conductivity, an improved proppant filling fracture conductivity tester was used to evaluate the effects of proppant particle size, sand concentration, coal elastic modulus, coal powder content and fracturing fluid type on complex fracture conductivity in coalbed methane reservoir. The results show that: under the same sand concentration, the conductivity of E-type fracture is significantly greater than that of T-type fracture and single fracture, that is, the more complex the fracture morphology is, the greater the conductivity is; the conductivity of ceramsite as proppant is significantly greater than that of coated sand and quartz sand; the higher the sand concentration is, the greater the elastic modulus of coal and rock is, the greater the conductivity of fracture is; coal powder and fracturing fluid have great influence on fracture conductivity. The higher the content of coal powder is, the higher the damage rate to fracture conductivity is. Guar gum fracturing fluid has the greatest damage to fracture conductivity, followed by clean fracturing fluid and active hydraulic fracturing fluid. In addition, the more complex the fracture morphology is, the more serious the damage degree of coal powder and fracturing fluid to fracture conductivity is.
-
-
[1] 许亚坤,张鹏,王昆.永夏煤田山西组煤系非常规气成藏条件与勘探潜力分析[J].河南理工大学学报(自然科学版),2020,39(2):38-46. XU Yakun, ZHANG Peng, WANG Kun. Analysis of forming conditions and exploration potential of unconventional gas in coal measures reservoir of Shanxi formation in Yongxia Coalfield[J]. Journal of Henan Polytechnic University (Natural Science), 2020, 39(2): 38.
[2] 徐凤银,肖芝华,陈东,等.我国煤层气开发技术现状与发展方向[J].煤炭科学技术,2019,47(10):205. XU Fengyin, XIAO Zhihua, CHEN Dong, et al. Current status and development direction of coalbed methane exploration technology in China[J]. Coal Science and Technology, 2019, 47(10): 205.
[3] 介丁非,徐向阳,郭丁丁,等.我国鼓励煤层气产业发展的创新政策研究[J].中国矿业,2020,29(3):11. JIE Dingfei, XU Xiangyang, GUO Dingding, et al. Research on innovation policies related to promoting the development of China’s coal bed methane industry[J]. China Mining Magazine, 2020, 29(3): 11.
[4] 陈红飞,胡薇薇,刘倩,等.低渗、特低渗储层煤层气水平井分段压裂参数优化及应用[J].煤炭技术,2019, 38(8):115-118. CHEN Hongfei, HU Weiwei, LIU Qian, et al. Optimization and application of staged fracturing parameters in low permeability CBM reservoirs[J]. Coal Technology, 2019, 38(8): 115-118.
[5] 杜敬国,蒋建勋,霍征光,等.高阶煤煤层气储层裂缝发育程度及渗透性定量评价[J].煤矿安全,2019,50(6):181-184. DU Jingguo, JIANG Jianxun, HUO Zhengguang, et al. Quantitative evaluation on fracture development and its permeability of high-rank coalbed methane reservoir[J]. Safety in Coal Mines, 2019, 50(6): 181-184.
[6] 高长龙,艾池,张博文,等.煤岩裂缝导流能力影响因素分析[J].当代化工,2015,44(7):1632-1633. GAO Changlong, AI Chi, ZHANG Bowen, et al. Influencing factors of coal fracture flow conductivity[J]. Contemporary Chemical Industry, 2015, 44(7): 1632-1633.
[7] 郑浩然.煤层气井压裂裂缝导流能力实验[J].东北石油大学学报,2013,37(2):107-111. ZHENG Haoran. Experimental study of conductivity of hydraulic fracture in CBM wells[J]. Journal of Northeast Petroleum University, 2013, 37(2): 107-111.
[8] 宋璐璐.煤岩裂缝导流能力的实验研究及影响因素分析[J].辽宁化工,2017,46(8):782-784. SONG Lulu. Experimental study on the conductivity of coal rock fracture and analysis of its influencing factors[J]. Liaoning Chemical Industry, 2017, 46(8): 782-784.
[9] 吴信波,姜在炳,徐建军,等.焦坪矿区煤储层水力压裂施工工艺优化[J].煤矿安全,2015,46(3):149-152. WU Xinbo, JIANG Zaibing, XU Jianjun, et al. Optimization of hydraulic fracturing construction process in coal reservoir of Jiaoping Mining Area[J]. Safety in Coal Mines, 2015, 46(3): 149-152.
[10] 倪小明,于芸芸,曹运兴.HPG破胶液影响下支撑剂导流能力变化特征研究[J].煤炭科学技术,2016,44(3):86-90. NI Xiaoming, YU Yunyun, CAO Yunxing. Study on changing characteristics about proppant flow conductivity under the influence of HPG fracturing fluid[J]. Coal Science and Technology, 2016, 44(3): 86-90.
[11] 刘岩,苏雪峰,张遂安.煤粉对支撑裂缝导流能力的影响特征及其防控[J].煤炭学报,2017,42(3):687. LIU Yan, SU Xuefeng, ZHANG Suian. Influencing characteristics and control of coal powder to proppant fracture conductivity[J]. Journal of China Coal Society, 2017, 42(3): 687-693.
[12] 熊俊杰,周际永,郭大立,等.支撑剂嵌入对裂缝导流能力的影响[J].重庆科技学院学报(自然科学版),2016,18(3):60-62. XIONG Junjie, ZHOU Jiyong, GUO Dali, et al. The influence of proppant embedment on the diversion capacity of fracture[J]. Journal of Chongqing University of Science and Technology (Natural Science Edition), 2016, 18(3): 60-62.
[13] PAN Linhua, ZHANG Shicheng, ZHANG Jin, et al. An experimental study on screening of dispersants for the coalbed methane stimulation[J]. International Journal of Oil Gas and Coal Technology, 2015, 9(4): 437. [14] YANG Ruiyue, HUANG Zhongwei, LI Gensheng, et al. A semianalytical method for modeling two-phase flow in coalbed methane reservoirs with complex fracture networks[J]. SPE Reservoir Evaluation & Engineering, 2018, 21(3): 719-732. [15] LIU Yuewu, OUYANG Weiping, ZHAO Peihua, et al. Numerical well test for well with finite conductivity vertical fracture in coalbed[J]. Applied Mathematics & Mechanics, 2014, 35(6): 729-740. [16] 杨兆中,熊俊雅,刘俊,等.基于Apriori关联分析的煤层气压裂效果主控因素识别[J].油气藏评价与开发,2020,10(4):63-69. YANG Zhaozhong, XIONG Junya, LIU Jun, et al. Identification of main controlling factors on performance of CBM well fracturing based on Apriori association analysis[J]. Reservoir Evaluation and Development, 2020, 10(4): 63-69.
[17] 李玉伟,贾丹,高睿,等.煤岩复杂裂缝长期导流能力实验研究[J].天然气与石油,2017,35(1):94-99. LI Yuwei, JIA Dan, GAO Rui, et al. Experimental study on long term diversion capability of complex fracture of coal and rock[J]. Natural Gas and Oil, 2017, 35(1):94-99.
[18] 邹雨时,马新仿,王雷,等.中、高煤阶煤岩压裂裂缝导流能力实验研究[J].煤炭学报,2011,36(3):473. ZOU Yushi, MA Xinfang, WANG Lei, et al. Experimental evaluation of conductivity of fracturing in medium and high-rank coal beds[J]. Journal of China Coal Society, 2011, 36(3): 473.
[19] 高长龙.煤岩复杂裂缝导流能力评价研究[D].大庆:东北石油大学,2016. -
期刊类型引用(2)
1. 周亚,陈筠,高为,唐摩天,宋怀雷,王文涛,冯政,孟祥瑞,王爽,邬忠虎. 贵州西部地区石炭系祥摆组煤系气储层特征分析. 煤炭技术. 2024(04): 102-104 . 百度学术
2. 胡永,周梓欣,仲劼,张伟. 乌鲁木齐河东矿区煤层气压裂裂缝导流能力影响因素研究. 中国煤炭地质. 2024(06): 27-32+57 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 47
- HTML全文浏览量: 0
- PDF下载量: 23
- 被引次数: 2