• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

微波加载路径对煤体致裂效果影响试验研究

吴旭飞, 胡国忠, 李康, 杨南

吴旭飞, 胡国忠, 李康, 杨南. 微波加载路径对煤体致裂效果影响试验研究[J]. 煤矿安全, 2022, 53(4): 20-28.
引用本文: 吴旭飞, 胡国忠, 李康, 杨南. 微波加载路径对煤体致裂效果影响试验研究[J]. 煤矿安全, 2022, 53(4): 20-28.
WU Xufei, HU Guozhong, LI Kang, YANG Nan. Experimental study on the effect of microwave loading path on coal cracking[J]. Safety in Coal Mines, 2022, 53(4): 20-28.
Citation: WU Xufei, HU Guozhong, LI Kang, YANG Nan. Experimental study on the effect of microwave loading path on coal cracking[J]. Safety in Coal Mines, 2022, 53(4): 20-28.

微波加载路径对煤体致裂效果影响试验研究

Experimental study on the effect of microwave loading path on coal cracking

  • 摘要: 为了探索微波的加载路径对微波致裂煤体效果的影响,利用自主研制的微波辐射试验装置开展了不同微波加载路径下的煤体致裂试验,研究了微波辐射前后煤样的P波波速、抗压强度、弹性模量、煤样表面裂隙演化及煤体微结构损伤因子的变化特征,揭示了不同微波加载路径对煤体致裂效果的影响规律。结果表明:微波辐射后煤样P波波速平均降幅为40.13%,其中微波连续加载条件下降幅高达56.47%;煤体抗压强度、弹性模量受微波辐射影响较明显,平均抗压强度降幅高达74.91%,弹性模量降幅均超过65.01%,其中连续加载下高达80.11%;煤体累积损伤因子与加载路径有关,不同微波加载路径对煤体内部微结构造成不同程度的损伤;微波连续加载与间歇加载均促进煤体表面裂隙的发育,在连续加载下,煤样表面裂隙更发育,破坏更显著。因此,煤体微波加载路径的改变能有效致裂煤体,在微波能量为216 kJ的试验条件下,通过微波连续辐射煤样,可最大程度对煤体进行致裂,煤体的致裂效果达到最优。
    Abstract: In order to explore the influence of microwave loading path on the effect of microwave cracking coal, in this paper, a self-developed microwave radiation experiment device was used to carry out coal cracking experiments under different microwave loading paths, and the P wave velocity, elastic modulus, coal surface crack evolution and coal microstructure damage of coal samples before and after microwave radiation were studied. The change characteristics of the factors reveal the influence of different microwave loading paths on the cracking effect of coal. The results showed that the average P-wave velocity of coal samples decreased by 40.13% after microwave radiation, and the decrease amplitude of microwave continuous loading was 56.47%; the elastic modulus of coal was significantly affected by microwave radiation, the average compressive strength has dropped as much as 74.91%, and the average elastic modulus decreased evenly under different paths, the elastic modulus decreases by more than 65.01%, and up to 80.11% under continuous loading; the cumulative damage factor of the coal body is related to the loading path, and different microwave loading paths cause different degrees of damage to the internal microstructure of the coal body; both continuous microwave loading and intermittent loading promote coal. The development of cracks on the surface of the coal under continuous loading, the development of cracks on the surface of the coal sample is more complex and the damage is more significant. Therefore, the change of the microwave loading path of the coal can effectively crack the coal. Underthe experimental conditions of microwave energy of 216 kJ, the continuous microwave radiation of the coal sample can crack the coal to the greatest extent, and the coal has the best cracking effect.
  • [1] Cheng Yuanping, Jiang Haina, Zhang Xiaolei, et al. Effects of coal rank on physicochemical properties of coal and on methane adsorption[J]. International Journal of Coal Science & Technology, 2017, 4(2): 129-146.
    [2] 王宏图,李晓红,鲜学福,等.地电场作用下煤中甲烷气体渗流性质的实验研究[J].岩石力学与工程学报,2004,23(2):303-306.

    WANG Hongtu, LI Xiaohong, XIAN Xuefu, et al. Testing study on seepage properties of methane gas in coal under the action of geo-electric field[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(2): 303-306.

    [3] 安宇,李丹.2008年—2014年我国煤矿事故统计分析及防治措施[J].煤矿现代化,2016,9(1):56-59.

    AN Yu, LI Dan. Coal mine accidents statistical analysis and prevention measures for China in recent years[J]. Coal Mine Modernization , 2016 , 9(1): 56-59.

    [4] 王兆丰,刘军.我国煤矿瓦斯抽放存在的问题及对策探讨[J].煤矿安全,2005,36(3):29-32.

    WANG Zhaofeng, LIU Jun. Problems existing in methane drainage in coal mines of China and probing into the countermeasures[J]. Safety in Coal Mines, 2005, 36(3): 29-32.

    [5] 张东明,白鑫,尹光志,等.低渗煤层液态CO2相变定向射孔致裂增透技术及应用[J].煤炭学报,2018,43(7):1938-1950.

    ZHANG Dongming, BAI Xin, YIN Guangzhi, et al. Research and application on technology of increased permeability by liquid CO2 phase change directional jet fracturing in low-permeability coal seam[J]. Journal of China Coal Society, 2018, 43(7): 1938-1950.

    [6] 徐雪战.低透气煤层超高压水力割缝与水力压裂联合增透技术[J].煤炭科学技术,2020,48(7):311-317.

    XU Xuezhan. Combined permeability enhancement technology of ultra-high pressure hydraulic slot and hydraulic fracturing in low permeability coal seam[J]. Coal Science and Technology, 2020, 48(7): 311-317.

    [7] 唐巨鹏,路江伟,许鹏,等.预制裂缝对煤系页岩水力压裂效果影响的试验研究[J].实验力学,2018,33(1):150-158.

    TANG Jupeng, LU Jiangwei, XU Peng, et al. Experimental investigation on the effect of prefabricated cracks on hydrofracture of coalmeasure shale[J]. Journal of Experimental Mechanics, 2018, 33(1): 150-158.

    [8] 李双,赵伟,刘德成,等.水力压裂增透技术在单一低透气性煤层中的应用[J].能源与环保,2020,42(11):38-42.

    LI Shuang, ZHAO Wei, LIU Decheng, et al. Application of hydraulic fracturing anti-permeability technology in single low permeability coal seam[J]. China Energy and Environmental Protection, 2020, 42(11): 38-42.

    [9] 韩永贵.液态二氧化碳致裂岩石关键技术研究[J].河南科技,2020,39(25):67-70.

    HAN Yonggui. Research on key technologies of liquid carbon dioxide fractured rock[J]. Henan Science and Technology, 2020, 39(25): 67-70.

    [10] 马会腾.声波激励对煤体官能团及孔隙结构的影响[D].徐州:中国矿业大学,2020.
    [11] Hu Guozhong, Sun Chao, Huang Jinxin, et al. Evolution of Shale Microstructure under Microwave Irradiation Stimulation[J]. Energy & Fuels, 2018, 32(11): 11467-11476.
    [12] Liang Deqing, He Song, Li Dongliang. Effect of microwave on formation/decomposition of natural gas hydrate[J]. Chinese Science Bulletin, 2009, 54(6): 965.
    [13] 管伟明.微波加热煤储层的共轭传热模型[J].辽宁工程技术大学学报(自然科学版),2014,33(11):1447.

    GUAN Weiming. Numerical simulation for conjugate heat transfer in microwave heated coal reservoir[J]. Journal of Liaoning Technical University(Natural Science Edtion), 2014, 33(11): 1447-1452.

    [14] 李贺,林柏泉,洪溢都,等.微波辐射下煤体孔裂隙结构演化特性[J].中国矿业大学学报,2017,46(6):1194-1201.

    LI He, LIN Baiquan, HONG Yidu, et al. Effect of microwave radiation on pore and fracture evolutions of coal[J]. Journal of China University of Mining & Technology, 2017, 46(6): 1194-1201.

    [15] 洪溢都.微波辐射下煤体的温升特性及孔隙结构改性增渗研究[D].徐州:中国矿业大学,2017.
    [16] 胡国忠,朱怡然,李志强.可控源微波场促进煤体中甲烷解吸的试验研究[J].岩石力学与工程学报,2017, 36(4):874-880.

    HU Guozhong, ZHU Yiran, LI Zhiqiang. Experimental study on desorption enhancing of methane in coal mass using a controlled microwave field[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 874-880.

    [17] 胡国忠,朱怡然,许家林,等.可控源微波场强化瓦斯解吸扩散的机理研究[J].中国矿业大学学报,2017, 46(3):480-484.

    HU Guozhong, ZHU Yiran, XU Jialin, et al. Mechanism of controlled microwave field enhancing gas desorption and diffusion in coal[J]. Journal of China University of Mining & Technology, 2017, 46(3): 480-484.

    [18] 胡国忠,杨南,朱健,等.微波辐射下含水分煤体孔渗特性及表面裂隙演化特征实验研究[J].煤炭学报,2020,45(S2):813-822.

    HU Guozhong, YANG Nan, ZHU Jian, et al. Evolution characteristics of microwave irradiation on pore permeability and surface cracks of coal with water: An experimental study[J]. Journal of China Coal Society, 2020, 45(S2): 813-822.

    [19] 胡国忠,朱杰琦,朱健,等.微波辐射下页岩微结构的损伤特性与致裂效应[J].煤炭学报,2020,45(10):3471-3479.

    HU Guozhong, ZHU Jieqi, ZHU Jian, et al. Fracturing effect and damage behaviors for microstructure in shale under microwave irradiation[J]. Journal of China Coal Society, 2020, 45(10): 3471-3479.

    [20] Kumar Hemant, Lester Edward, Kingman Sam, et al. Inducing fractures and increasing cleat apertures in a bituminous coal under isotropic stress via application of microwave energy[J]. International Journal of Coal Geology, 2011, 88(1): 75-82.
    [21] 任阳光,曹志华,孙阳阳,等.褐煤在微波场下的孔隙结构及其分形维数变化特征[J].中国矿业,2017,26(5):142-147.

    REN Yangguang, CAO Zhihua, SUN Yangyang, et al. Pore structure and fractal dimension changes of lignite under microwave irradiation[J]. China Mining Magazine, 2017, 26(5): 142-147.

    [22] 任阳光,王浩,郑剑平,等.微波辐照对褐煤表面含氧官能团及孔隙结构的影响[J].煤炭工程,2016,48(2):123-126.

    REN Yangguang, WANG Hao, ZHENG Jianping, et al. Variation of oxygen-containing functional groups and pore structure inlignite under microwave irradiation[J]. Coal Engineering, 2016, 48(2): 123-126.

    [23] 董超,王恩元,晋明月,等.微波作用对煤微观孔隙影响的研究[J].煤矿安全,2013,44(5):49-52.

    DONG Chao, WANG Enyuan, JIN Mingyue, et al. Research on the effect of microwave on coal micro porous[J]. Safety in Coal Mines, 2013, 44(5): 49-52.

    [24] Wang Hongcai, Rezaee Reza, Saeedi Ali. Preliminar study of improving reservoir quality of tight gas sands in the near wellbore region by microwave heating[J]. Journal of Natural Gas Science and Engineering, 2016, 32(3): 395-406.
    [25] 陈光波,张文俊,李谭,等.水岩作用下煤岩组合体力学特性损伤劣化时效性研究[J/OL].煤炭学报:1-13[2021-03-18].https://doi.org/10.13225/j.cnki.jccs.2021.0995.
    [26] 张超,杨楚卿,白允,等.岩石类脆性材料损伤演化分析及其模型方法研究[J].岩土力学,2021(9):1-12.

    ZHANG Chao, YANG Chuqing, BAI Yun, et al. Investigation of damage evolution and its model of rock-like brittle materials[J]. Rock and Soil Mechanics, 2021(9): 1-12.

  • 期刊类型引用(1)

    1. 齐消寒,刘晓东,马恒,刘忠桦,谢文坤,张颖. 液氮-微波急速冷热冲击下饱水煤损伤及渗流特征研究. 采矿与安全工程学报. 2025(02): 472-486 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  28
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 3
出版历程
  • 发布日期:  2022-04-19

目录

    /

    返回文章
    返回