基于SBAS-InSAR和偏移追踪技术的露天煤矿地面形变监测
Ground deformation monitoring of open-pit coal mine based on SBAS-InSAR and offset tracking techniques
-
摘要: 利用基于StaMPS的SBAS-InSAR技术,以安太堡露天煤矿为研究区域,对覆盖露天煤矿的33景哨兵升降轨数据进行时序干涉处理,提取了露天煤矿区7个月的地面形变信息,根据SAR卫星成像几何对斜距向形变信息进行分解,获取了数据采集时间段内露天煤矿的二维方向的累积形变量,计算的露天煤矿形变速率为-258 mm/a,在排土场发现较大的沉降中心,累积沉降量为134 mm;采用偏移追踪技术计算了露天煤矿失相干区域的大梯度形变,2种技术相结合可以较好地对露天煤矿不同梯度的形变进行监测。Abstract: Using SBAS-InSAR based on StaMPS and taking Antaibao Open-pit Coal Mine as research area, this paper carries out time series interferometry processing on 33 sentinel ascending and descending images, extracts ground deformation information of open pit coal mine for 7 months. According to SAR satellite imaging geometry, slant-range deformation information is decomposed, and cumulative deformation of open-pit coal mine in two-dimensional direction during data collection period is obtained. Deformation rate of open-pit coal mine is -258 mm/a. A large subsidence center is found in dump, and cumulative subsidence is 134 mm; large gradient deformation in decorrelation area is calculated by offset tracking technique. The combination of two techniques can better monitor deformation of open-pit coal mine at different gradients.
-
-
[1] Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience & Remote Sensing, 2001, 39(1): 8-20. [2] Ferretti A, Prati C. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience & Remote Sensing, 2000, 38(5): 2202-2212. [3] Ferretti A, Fumagalli A, Novali F, et al. A New Algorithm for Processing Interferometric Data-Stacks: Squee-SAR[J]. IEEE Transactions on Geoscience & Remote Sensing, 2011, 49(9): 3460-3470. [4] Berardino P, Fornaro G, Lanari R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J]. IEEE Transactions on Geoscience & Remote Sensing, 2002, 40(11): 2375-2383. [5] Hooper A, Zebker H, Segall P, et al. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers[J]. Geophysical Research Letters, 2004, 31(23): 1-5. [6] Hooper A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches[J]. Geophysical Research Letters, 2008, 35(16): 96-106. [7] Ou D, Tan K, Du Q, et al. Decision Fusion of D-InSAR and Pixel Offset Tracking for Coal Mining Deformation Monitoring[J]. Remote Sensing, 2018, 10: 1055. [8] 徐小波,马超,单新建,等.联合DInSAR与Offset-tracking技术监测高强度采区开采沉陷的方法[J].地球信息科学学报,2020,22(12):2425-2435. XU Xiaobo, MA Chao, SHAN Xinjian, et al. Monitoring ground subsidence in high-intensity mining area by integrating DInSAR and offset-tracking technology[J]. Journal of Geo-information Science, 2020, 22(12): 2425-2435.
[9] 杜建涛,闫丽,赵超英.蔚县矿区地面沉陷InSAR多维形变监测[J].煤田地质与勘探,2020,48(1):168. DU Jiantao, YAN Li, ZHAO Chaoying. Multidimensional deformation monitoring using InSAR technology in Yuxian mining area[J]. Coal Geology & Exploration, 2020, 48(1): 168.
[10] Tang W, Motagh M, Zhan W. Monitoring active open-pit mine stability in the Rhenish coalfields of Germany using a coherence-based SBAS method[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 93: 102217. [11] T Carlà, Farina P, Intrieri E, et al. Integration of ground-based radar and satellite InSAR data for the analysis of an unexpected slope failure in an open-pit mine[J]. Engineering Geology, 2018, 235: 39-52. [12] Wang, Lu, Chen, et al. Evaluating the Feasibility of Illegal Open-Pit Mining Identification Using Insar Coherence[J]. Remote Sensing, 2020, 12(3): 367. [13] Hooper A, Segall P, Zebker H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos[J/OL]. Journal of Geophysical Research Solid Earth, 2007, 112(B7).https://doi.org/10.1029/2006JB004763. [14] Samsonov S V, D'oreye N. Multidimensional Small Baseline Subset(MSBAS)for Two-Dimensional Deformation Analysis: Case Study Mexico City[J]. Canadian Journal of Remote Sensing, 2017, 43(4): 318-329. [15] Lazecky Milan. Monitoring of Terrain Relief Changes Using Synthetic Aperture Radar Interferometry[EB/OL]. Ostrava, 2011. Dostupné z: http://hdl.handle.net/10084/89624. -
期刊类型引用(2)
1. 吴丽丽,李金鹏,武雨祺,郑贺崇. 抗冲击地压复合夹芯组合板的静、动态力学性能研究. 振动与冲击. 2024(17): 1-11+18 . 百度学术
2. 张东超. 支撑物对预折纹吸能构件力学特性研究. 机电产品开发与创新. 2024(05): 32-36 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 37
- HTML全文浏览量: 0
- PDF下载量: 18
- 被引次数: 3