上保护层开采遗留煤柱对保护效果的影响
Influence of residual coal pillar from upper protective layer mining on protection effect
-
摘要: 为研究上保护层开采遗留区段煤柱对被保护层保护效果的影响,以平煤四矿己15-23160联络巷下帮遗留的4 m煤柱及己15-23140、己15-23160、己16.17-23140工作面为研究对象,采用数值模拟和现场实测相结合的方法进行了研究。研究结果表明:煤柱沿z轴负方向被压实,累计最大位移为0.289 m;煤柱两侧煤壁沿x轴移动方向不同,上壁沿x轴负方向,下壁沿x轴正方向,累计位移量分别为0.055m和0.156m,己15-23160工作面采掘活动对煤柱位移影响最为显著;遗留煤柱最大残余高度为0.59 m,相比原始煤柱高度降低1.01m;深部煤体残余瓦斯含量和钻屑量变化趋势一致,最大残余煤层瓦斯含量2.63 m3/t,煤层瓦斯释放率保持在50%以上,最大钻屑量为3.7kg/m。残余煤柱影响区内煤层瓦斯得到很好地释放且无明显应力集中,保护层开采遗留4m煤柱能够达到连续的保护效果。Abstract: In order to study the influence of the coal pillar left in the upper protection layer on the protection effect of the protected layer, the 4 m coal pillar left at the lower side of Ⅵ15-23160 connecting roadway and Ⅵ15-23140, Ⅵ15-23160 and Ⅵ16.17-23140 working faces in Pingmei No. 4 Mine are taken as the research objects. The research is carried out by combining numerical simulation and field measurement. The research results are as follows: the coal pillar is compacted along the negative direction of the z axis, with a cumulative maximum displacement of 0.289 m; the coal walls on both sides of the coal pillar move in different directions along the x axis, the upper wall is along the negative direction of the x axis, the lower wall is along the positive direction of the x axis, and the cumulative displacement is 0.055 m and 0.156 m, respectively; the mining activities of Ⅵ15-23160 working face have the most significant impact on the displacement of the coal pillar, and the largest remaining coal pillar is 0.59 m, which is 1.01 m lower than the original coal pillar height; the residual gas content of deep coal has the same change trend as the amount of drill cuttings. The maximum residual coal seam gas content is 2.63 m3/t, and the coal seam gas release rate remains above 50%, and the maximum amount of cuts is 3.7 kg/m. The coal seam gas in the area affected by the residual coal pillars is well released without obvious stress concentration. The 4 m coal pillar left by protective layer mining can achieve continuous protection.
-
-
[1] 袁亮.深部采动响应与灾害防控研究进展[J].煤炭学报,2021,46(3):716-725. YUAN Liang. Research progress of mining response and disaster prevention and control in deep coal mines[J]. Journal of China Coal Society, 2021, 46(3): 716-725.
[2] 王宁.深部急倾斜煤层开采灾害防控及力学行为研究[J].煤矿安全,2020,51(9):205-210. WANG Ning. Study on prevention and control of mining disaster and mechanical behavior of deep steep coal seam[J]. Safety in Coal Mines, 2020, 51(9): 205-210.
[3] 张庆贺,袁亮,杨科,等.深井煤岩动力灾害的连续卸压开采防治机理[J].采矿与安全工程学报,2019,36(1): 80-86. ZHANG Qinghe, YUAN Liang, YANG Ke, et al. Mechanism analysis on continuous stress-relief mining for preventing coal and rock dynamic disasters in deep coal mines[J]. Journal of Mining & Safety Engineering, 2019, 36(1): 80-86.
[4] 许延春.综放开采防水煤岩柱保护层的“有效隔水厚度”留设方法[J].煤炭学报,2005(3):305-308. XU Yanchun. Design methods of the effective water-resisting thickness for the protective seam of the water barrier in fully-caving mechanized coal mining[J]. Journal of China Coal Society, 2005(3): 305-308.
[5] 王海锋,程远平,侯少杰,等.倾斜煤层远距离上被保护层连续卸压保护技术研究及应用[J].采矿与安全工程学报,2010,27(2):210-214. WANG Haifeng, CHENG Yuanping, HOU Shaojie, et al. Application of continuously pressure-relieving technology on long-distance upper protected seam of inclined coal seam[J]. Journal of Mining & Safety Engineering, 2010, 27(2): 210-214.
[6] 殷伟,高焱,陈家瑞,等.上保护层开采下伏煤岩体应力卸压规律力学分析[J].煤矿安全,2019,50(9):197. YIN Wei, GAO Yan, CHEN Jiarui, et al. Mechanical analysis on pressure relief principle of underlying coal-rock mass with upper protective seam mining method[J]. Safety in Coal Mines, 2019, 50(9): 197-202.
[7] 李海涛,闫大鹤,浦仕江,等.近距离煤层群保护层开采底板卸压瓦斯抽采技术研究[J].煤炭工程,2020, 52(7):78-82. LI Haitao, YAN Dahe, PU Shijiang, et al. Gas extraction with floor stress relieving of protective layer mining in contiguous coal seams[J]. Coal Engineering, 2020, 52(7): 78-82.
[8] 张玉波,李世超.不同护巷煤柱近距离倾斜下保护层开采卸压效果研究[J].煤炭工程,2014,46(4):76. ZHANG Yubo, LI Shichao. Study on pressure releasing effect of protective seam mining under close inclined distance of different protective seam gateway[J]. Coal Engineering, 2014, 46(4): 76.
[9] 刘萍,朱恒忠.煤柱影响下保护层开采的消突范围划分及效果评价[J].煤矿安全,2014,45(1):211-214. LIU Ping, ZHU Hengzhong. Eliminating outburst scope and effect evaluation of protective layer mining under the influence of coal pillar[J]. Safety in Coal Mines, 2014, 45(1): 211-214.
[10] 康建东.煤柱对上保护层开采卸压消突效果的影响研究[J].矿业安全与环保,2018,45(4):17-21. KANG Jiandong. Study on the influence of coal pillar on the pressure relief and outburst elimination of the upper protective layer mining[J]. Mining Safety & Environmental Protection, 2018, 45(4): 17-21.
[11] 姜福兴,王玉霄,李明,等.上保护层煤柱引发被保护层冲击机理研究[J].岩土工程学报,2017,39(9):1689-1696. JIANG Fuxing, WANG Yuxiao, LI Ming, et al. Mechanism of rockburst occurring in protected coal seam induced by coal pillar of protective coal seam[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1689-1696.
[12] 王海东,路丽刚,孙鑫,等.近距离保护层开采遗留煤柱应力集中区瓦斯赋存规律研究[J].煤矿安全,2020,51(8):199-205. WANG Haidong, LU Ligang, SUN Xin, et al. Study on gas occurrence law in stress concentration zone of remaining coal pillars in close protection[J]. Safety in Coal Mines, 2020, 51(8): 199-205.
[13] 徐超,李小芳,王凯,等.高瓦斯煤层群保护层工作面留设煤柱合理宽度[J].中国矿业大学学报,2020,49(3):445-452. XU Chao, LI Xiaofang, WANG Kai, et al. Reasonable coal pillar width of protective layer during high-gas coal seams mining[J]. Journal of China University of Mining & Technology, 2020, 49(3): 445-452.
[14] 齐峰.保护层区段煤柱宽度对被保护层卸压效果的影响[J].矿业安全与环保,2016,43(4):10-13. QI Feng. Influence of sectional coal pillar width of protective seam on pressure relief effect of protected seam[J]. Mining Safety & Environmental Protection, 2016, 43(4): 10-13.
[15] 李春阁,杨长德,王鹏,等.实现倾斜方向连续卸压的留煤柱开采保护层技术[J].煤炭工程,2016,48(7):4-7. LI Chunge, YANG Changde, WANG Peng, et al. Coal pillar remaining protective coal seam mining for inclined successive and sufficient pressure-relieving[J]. Coal Engineering, 2016, 48(7): 4-7.
[16] 张志沛,李锋.缓倾斜厚煤层浅部回采区段煤柱留设宽度优化[J].科学技术与工程,2021,21(7):2655. ZHANG Zhipei, LI Feng. Optimization of section coal pillar width in shallow mining of gently inclined thick coal seam[J]. Science Technology and Engineering, 2021, 21(7): 2655-2663.
[17] 刘宜平,朱恒忠,殷帅峰.煤柱影响下被保护层开采应力演化特征数值模拟研究[J].煤炭工程,2020,52(9): 99. LIU Yiping, ZHU Hengzhong, YIN Shuaifeng. Numerical simulation study on the evolution characteristics of mining stress for protected layer under the influence of coal pillar[J]. Coal Engineering, 2020, 52(9): 99.
[18] 国家煤矿安全监察局.防治煤与瓦斯突出细则[M]. 北京:煤炭工业出版社,2019. [19] 李成武,王义林,王其江,等.直接法瓦斯含量测定结果准确性实验研究[J].煤炭学报,2020,45(1):189. LI Chengwu, WANG Yilin, WANG Qijiang, et al. Experimental study on accuracy of direct gas content determination[J]. Journal of China Coal Society, 2020, 45(1): 189.
[20] 张东旭.低含量高瓦斯涌出量工作面煤层瓦斯治理技术[J].煤矿安全,2021,52(4):94-100. ZHANG Dongxu. Coal seam gas control technology in working face with low content and high gas emission[J]. Safety in Coal Mines, 2021, 52(4): 94-100.
[21] 周洋,梁冰,孙维吉,等.深部煤层钻屑粒度随钻进深度分布规律[J].中国安全生产科学技术,2020,16(1):66-72. ZHOU Yang, LIANG Bing, SUN Weiji, et al. Distribution laws of particle size of drilling cuttings with drilling depth in deep coal seams[J]. Journal of Safety Science and Technology, 2020, 16(1): 66-72.
-
期刊类型引用(3)
1. 梅福星,尚宇琦,孔德中,张鹏飞,张林,吴仕雄. 基于DIC技术近距离煤层采动裂隙-位移-应变演化规律相似模拟研究. 矿业科学学报. 2024(04): 519-528 . 百度学术
2. 陈朋磊,陈鑫源,刘欢欢,王丹,梁洁,杨景景. 近距离煤层回采巷道合理位置确定应用研究. 能源与环保. 2022(05): 262-269 . 百度学术
3. 周波,张旺,周泽,李克城. 近距离采空区下煤层开采矿压显现特征研究. 煤矿安全. 2021(10): 217-223 . 本站查看
其他类型引用(0)
计量
- 文章访问数: 71
- HTML全文浏览量: 0
- PDF下载量: 69
- 被引次数: 3