• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

煤矿安全监控系统层级故障自诊断技术

黄伟, 陈瑶, 华月存, 孙超

黄伟, 陈瑶, 华月存, 孙超. 煤矿安全监控系统层级故障自诊断技术[J]. 煤矿安全, 2021, 52(12): 133-137.
引用本文: 黄伟, 陈瑶, 华月存, 孙超. 煤矿安全监控系统层级故障自诊断技术[J]. 煤矿安全, 2021, 52(12): 133-137.
HUANG Wei, CHEN Yao, HUA Yuecun, SUN Chao. Self-diagnosis technology of hierarchical fault for coal mine safety monitoring system[J]. Safety in Coal Mines, 2021, 52(12): 133-137.
Citation: HUANG Wei, CHEN Yao, HUA Yuecun, SUN Chao. Self-diagnosis technology of hierarchical fault for coal mine safety monitoring system[J]. Safety in Coal Mines, 2021, 52(12): 133-137.

煤矿安全监控系统层级故障自诊断技术

Self-diagnosis technology of hierarchical fault for coal mine safety monitoring system

  • 摘要: 煤矿安全监控系统数字化升级改造,可使其安全性、稳定性显著提高,而作业环境、系统软硬件和人为操作等因素仍会导致数据采集、处理和网络传输出现异常,因此需要在系统关键环节设置故障自诊断单元。根据煤矿安全监控系统配置特点和运行维护实际需求,将系统划分为3个层级:感知层、传输层、平台层,针对各层级存在的问题,从软硬件方面,研究设计了故障自诊断模块,指出各模块应具备的功能。现场应用试验表明:层级故障自诊断技术能有效改善信息交互、数据传输质量,提高煤矿安全监控系统的可靠性。
    Abstract: The digital upgrade and transformation of the coal mine safety monitoring system have significantly improved its safety and stability, but the operating environment, system software and hardware, human operation and other factors still lead to abnormal situation, such as data collection, data processing and network transmission, so it is necessary to set the fault self-diagnosis units in the key links of the system. According to the configuration characteristics of coal mine safety monitoring system and the actual requirements of operation and maintenance, the system is divided into three levels: perception layer, transmission layer and platform layer. In view of the problems existing in each level, the fault self-diagnosis module is studied and designed from the aspects of software and hardware, and the functions of each module are pointed out. The field application test shows that the hierarchical fault self-diagnosis technology can effectively improve the quality of information interaction and data transmission, and improve the reliability of coal mine safety monitoring system.
  • [1] 汪丛笑.煤矿安全监控系统智能化现状及发展对策[J].工矿自动化,2017,43(11):5-10.

    WANG Congxiao. Present situation and development countermeasures of coal mine safety monitoring and control system intelligentization[J]. Industry and Mine Automation, 2017, 43(11): 5-10.

    [2] 孙继平.煤矿信息化自动化新技术与发展[J].煤炭科学技术,2016,44(1):19-23.

    SUN Jiping. New technology and development of mine informatization and automation[J]. Coal Science and Technology, 2016, 44(1): 19-23.

    [3] 郭江涛.煤矿安全监控系统现状及发展趋势[J].煤矿机械,2017,38(3):1-3.

    GUO Jiangtao. Present situation and development of coal mine safety monitoring system[J]. Coal Mine Machinery, 2017, 38(3): 1-3.

    [4] 煤安监函[2016]5号《煤矿安全监控系统升级改造技术方案》的通知[A].
    [5] 高文.煤矿监控类系统远程故障分析平台[J].工矿自动化,2019,45(2):105-108.

    GAO Wen. Remote fault analysis platform of coal mine monitoring system[J]. Industry and Mine Automation, 2019, 45(2): 105-108.

    [6] 张翼.煤矿安全监控多系统融合与联动交互方案[J].煤矿安全,2019,50(6):100-103.

    ZHANG Yi. Multi-system fusion and linkage interaction solution of coal mine safety monitoring system[J]. Safety in Coal Mines, 2019, 50(6): 100-103.

    [7] 孙继平.煤矿监控技术装备与标准[M].北京:煤炭工业出版社,2010.
    [8] 王国法,刘峰,孟祥军,等.煤矿智能化(初级阶段)研究与实践[J].煤炭科学技术,2019,47(8):1-36.

    WANG Guofa, LIU Feng, MENG Xiangjun, et al. Research and practice on intelligent coal mine construction (primary stage)[J]. Coal Science and Technology, 2019, 47(8): 1-36.

    [9] 王国法,王虹,任怀伟,等.智慧煤矿2025情境目标和发展路径[J].煤炭学报,2018,43(2):295.

    WANG Guofa, WANG Hong, REN Huaiwei, et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society, 2018, 43(2): 295.

    [10] 马龙.抗电磁干扰技术在煤矿监控系统中的应用[J].煤矿安全,2019,50(11):113-115.

    MA Long. Application of anti-electromagnetic interference technology in coal mine monitoring system[J]. Safety in Coal Mines, 2019, 50(11): 113-115.

    [11] 朱前伟.煤矿安全监控系统及组成设备抗干扰设计[J].工矿自动化,2017,43(6):18.

    ZHU Qianwei. Anti-interference design for coal mine safety monitoring system and composition equipment[J]. Industry and Mine Automation, 2017, 43(6): 18.

    [12] 张可,周东华,柴毅.复合故障诊断技术综述[J].控制理论与应用,2015,32(9):1143-1157.

    ZHANG Ke, ZHOU Donghua, CHAI Yi. Review of multiple fault diagnosis methods[J]. Control Theory & Applications, 2015, 32(9): 1143- 1157.

    [13] 梁荣,董丁稳.矿井瓦斯监测数据消噪方法[J].工矿自动化,2018,44(2):18-22.

    LIANG Rong, DONG Dingwen. De-noising method of mine gas monitoring data[J]. Industry and Mine Automation, 2018, 44(2): 18-22.

    [14] 黄凯峰.煤矿安全监测监控系统瓦斯浓度异常信号辨识方法研究[D].淮南:安徽理工大学,2016.
    [15] 陈杰.矿用CH4、CO传感器失效机理与解决方案[D].北京:煤炭科学研究总院,2014.
    [16] 杨梦莹.基于多传感器数据融合的矿用瓦斯传感器故障诊断方法研究[D].徐州:中国矿业大学,2019.
    [17] 魏连江,梁伟,高金晓,等.矿井瓦斯监测数据趋势预测研究进展[J].煤矿安全,2016,47(10):149-152.

    WEI Lianjiang, LIANG Wei, GAO Jinxiao, et al. Research progress on trend prediction of mine gas monitoring data[J]. Safety in Coal Mines, 2016, 44(1): 19-23.

  • 期刊类型引用(3)

    1. 宋建民,邹永洺. 基于EGF增渗材料的煤层酸化增透技术研究. 煤矿安全. 2023(05): 161-168 . 本站查看
    2. 韩培壮,高亚斌,王飞,向鑫,郭晓亚. 圆锥形喷嘴出口直径对水射流冲击动力特性的影响研究. 中国安全生产科学技术. 2022(07): 75-80 . 百度学术
    3. 刘文川,汤积仁,张慧栋,李怡静. 过热液体闪沸喷射钻进羽流相互作用调控及成孔直径预测. 煤炭学报. 2022(09): 3270-3283 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  62
  • HTML全文浏览量:  0
  • PDF下载量:  29
  • 被引次数: 5
出版历程
  • 发布日期:  2021-12-19

目录

    /

    返回文章
    返回