基于SCM与K-means聚类算法的矿工不安全动作分类特征研究
Study on characteristics of unsafe behaviors in coal mines based on SCM and K-means clustering analysis
-
摘要: 为减少托管运营煤矿不安全行为导致的安全事故,针对此种运营模式下人员的不安全动作进行科学分类研究;现场调研了2017—2018年内蒙古、宁夏、新疆地区6个煤矿1 996名煤矿从业者的“三违”行为情况,从时间、工种及SCM行为产生特点3个方面对全部“三违”行为进行统计分类;基于k-means聚类算法建立了8个指标、4个子类的数据集合,并通过PCA降维绘制了可视化聚类散点图。分析表明:采用SCM和k-means的聚类算4种不安全动作分类占比关系与人工分析均得出了相同的结论;在所有不安全动作中,违章占比最大,错误占比最小;研究结果对于减少煤矿从业人员不安全动作行为,以及分级、分类预防安全事故的发生具有一定的指导意义。
-
关键词:
- 煤矿安全 /
- SCM模型 /
- k-means聚类分析 /
- PCA降维 /
- 不安全动作
Abstract: In order to reduce the safety accidents caused by the unsafe behaviors in the managed operation of coal mines, we conducted a scientific classification study on the unsafe behaviors of personnel under such operation mode. The field investigation on the “three violations” behaviors of 1 996 coal miners in six coal mines in Inner Mongolia, Ningxia and Xinjiang from 2017 to 2018 was conducted. All the three violations were statistically classified from three aspects of time, job type and characteristics of SCM behavior generation. A data set of 8 indicators and 4 subcategories was established based on K-means clustering algorithm, and a visual clustering scatter diagram was drawn through PCA dimension reduction. The analysis shows that: using SCM and K-means clustering to calculate the proportion of four kinds of unsafe action classification, the same conclusion was obtained as manual analysis, in all unsafe action, lawless accounted for the biggest, errors accounted for the smallest proportion. The research results have certain guiding significance for reducing unsafe behaviors of coal mine employees and preventing safety accidents by classification. -
-
[1] 傅贵,郭孝臣.事故致因理论的研究与应用简评[J].安全,2019,40(9):1-4. FU Gui, GUO Xiaochen. A brief review on the study and application of accident causation theory[J]. Safety, 2019, 40(9): 1-4.
[2] ZHOU Cheng, CHEN Rui, JIANG Shuangnan, et al. Human dynamics in near-miss accidents resulting from unsafe behavior of construction workers[J]. Physica A: Statistical Mechanics and its Applications, 2019, 530: 121-139. [3] 边俊奇,毕建乙,王海东.基于安全行为观察的煤矿安全管理研究[J].煤矿开采,2019,24(1):150-152. BIAN Junqi, BI Jianyi, WANG Haidong. Coal mine safety management bases on safety behavior observation[J]. Coal Mining Technology, 2019, 24(1): 150-152.
[4] 孙世梅,邱升恒,耿晓帅,等.基于"2-4"模型的建筑施工物体打击事故原因分类与统计分析[J].建筑安全,2020,35(5):55-59. [5] 付净,傅贵,聂方超,等.煤矿事故不安全动作原因识别及作用研究[J].煤矿安全,2020,51(1):242. FU Jing, FU Gui, NIE Fangchao, et al. Causes identification and influence of unsafe acts in coal mine accidents[J]. Safety in Coal Mines, 2020, 51(1): 242.
[6] 薛宇敬阳,傅贵.通用航空飞行事故不安全动作原因作用路径的统计分析[J].安全与环境工程,2018,25(2):131-138. XUE Yujingyang, FU Gui. Statistical analysis of the action path of unsafe act causes in general aviation accidents[J]. Safety and Environmental Engineering, 2018, 25(2): 131-138.
[7] 李敬强,王蓓,赵宁,等.基于k-means聚类的管制员注意品质特征研究[J].中国安全科学学报,2017,27(6):13-18. LI Jingqiang, WANG Bei, ZHAO Ning, et al. On characteristics of attention quality of controller based on k-means clustering[J]. China Safety Science Journal, 2017, 27(6): 13-18.
[8] 张江石,赵群,张文越.安全管理实践与行为关系研究[J].安全与环境学报,2018,18(6):2279-2284. ZHANG Jiangshi, ZHAO Qun, ZHANG Wenyue. On the proper relation between the safety management practice and the workers’ corresponding behaviors[J]. Journal of Safety and Environment, 2018, 18(6): 2279-2284.
[9] Justin Larouzee, Jean-Christophe Le Coze. Good and bad reasons: The Swiss cheese model and its critics[J]. Safety Science, 2020, 126: 104-115. [10] 蔺艳艳,陆介平,王郁鑫,等.改进的k-means算法在三支决策中的应用研究[J].计算机与数字工程,2020,48(6):1294-1299. LIN Yanyan, LU Jieping, WANG Yuxin, et al. Application research of improved k-means algorithm in three decisions[J]. Computer and Digital Engineering, 2020, 48(6): 1294-1299.
-
期刊类型引用(3)
1. 李珏,蒋敏. 谱聚类和Apriori算法在建筑坍塌事故致因组合分析中的应用. 安全与环境学报. 2024(02): 617-625 . 百度学术
2. 张艳军,肖渭,高伟. 不安全操作对煤矿生产系统因果回路及安全影响. 微型电脑应用. 2024(01): 16-18+22 . 百度学术
3. 李旦. 基于K-means聚类分析的公路隧道施工安全风险研究. 江西建材. 2024(12): 447-450 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 46
- HTML全文浏览量: 0
- PDF下载量: 11
- 被引次数: 3