冻融作用下煤体孔隙结构损伤演化规律研究
Research on evolution law of coal pore structure damage under the action of freeze-thaw
-
摘要: 为了揭示冻融作用对煤体孔隙结构的影响,采用冻融试验机对煤样进行冻融循环试验,利用声波测速仪和核磁共振设备对不同冻融循环次数下煤样的孔隙演化规律进行了分析。研究结果表明,冻融循环会造成煤体的孔隙结构损伤,促进煤体孔隙的发育,造成煤样波速降低,随着冻融循环次数的增加,煤样的小孔和中孔不断的扩展联通,造成煤样的大孔数量显著增加,孔隙连通性增强,煤样的总孔隙度、残余孔隙度和有效孔隙度和渗透率也随之增加,表明冻融循环能够提高煤层的透气性,从而有利于煤层气的抽采。Abstract: To reveal the effect of freeze-thaw on the pore structure of coal, a freeze-thaw test was carried out on the coal sample using a freeze-thaw machine. The pore evolution of coal samples under different freeze-thaw cycles was analyzed by using acoustic velocimeter and nuclear magnetic resonance equipment. The result shows that freeze-thaw can damage the pore structure and promote the development of pore of coal sample, and reduce the wave velocity of coal samples. With increase of freeze-thaw cycles, the micropore and mesopore of coal sample continue to expand and communicate, resulting in a significant increase in the number of macropore, the connectivity of pores, total porosity, residual porosity effective porosity and permeability of coal samples has increased, indicating that freeze-thaw can improve the permeability of coal seam, which is conducive to the extraction of coalbed methane.
-
-
[1] 秦勇,袁亮,胡千庭,等.我国煤层气勘探与开发技术现状及发展方向[J].煤炭科学技术,2012,40(10):1-6.QIN Yong, YUAN Liang, HU Qianting, et al. Status and development orientation of coal bed methane exploration and development technology in China[J]. Coal Science & Technology, 2012, 40(10): 1-6. [2] 翟成,林柏泉,王力.我国煤矿井下煤层气抽采利用现状及问题[J].天然气工业,2008(7):23-26. ZHAI Cheng, LIN Boquan, WANG Li. Status and problems of drainage and utilization of downhole coalbed methane in coal mines in China[J]. Natural Gas Industry, 2008, 28(7): 23-26.
[3] 申宝宏,刘见中,张泓.我国煤矿瓦斯治理的技术对策[J].煤炭学报,2007(7):673. SHEN Baohong, LIU Jianzhong, ZHANG Hong. The technical measures of gas control in China coal mines[J]. Journal of China Coal Society, 2007, 32(7): 673.
[4] 邓广哲,付英凯,杨东.下保护层开采上覆煤岩层卸压效果研究[J].煤矿安全,2020,51(9):174-178. DENG Guangzhe, FU Yingkai, YANG Dong. Study on pressure relief effect of overlying coal and rock mass in mining under protective layer[J]. Safety in Coal Mines, 2020, 51(9): 174-178.
[5] 程远平,付建华,俞启香.中国煤矿瓦斯抽采技术的发展[J].采矿与安全工程学报,2009,26(2):127-139. CHENG Yuanping, FU Jianhua, YU Qixiang. Development of gas extraction technology in coal mines of China[J]. Journal of Mining & Safety Engineering, 2009, 26(2): 127-139.
[6] 涂敏,缪协兴,黄乃斌.远程下保护层开采被保护煤层变形规律研究[J].采矿与安全工程学报,2006(3):253-257. TU Min, MIU Xiexing, HUANG Nairen. Deformation rule of protected coal seam exploited by using the long-distance-lower protective seam method[J]. Journal of Mining & Safety Engineering, 2006(3): 253-257.
[7] 富向.井下点式水力压裂增透技术研究[J].煤炭学报, 2011,36(8):1317-1321. FU Xiang. Study of underground point hydraulic fracturing increased permeability technology[J]. Journal of China Coal Society, 2011, 36(8): 1317-1321.
[8] 林柏泉,孟杰,宁俊,等.含瓦斯煤体水力压裂动态变化特征研究[J].采矿与安全工程学报,2012,29(1):106-110. LIN Boquan, MENG Jie, NING Jun, et al. Research on dynamic characteristics of hydraulic fracturing in coal body containing gas[J]. Journal of Mining & Safety Engineering, 2012, 29(1): 106-110.
[9] 邓强.水力压裂消突技术在低透气性煤层瓦斯治理的应用[J].煤矿安全,2021,52(1):98. DENG Qiang. Application of anti-outburst technology of hydraulic fracturing in gas treatment of low permeability coal seam[J]. Safety in Coal Mines, 2021, 52(1): 98.
[10] 李晓红,王晓川,康勇,等.煤层水力割缝系统过渡过程能量特性与耗散[J].煤炭学报,2014,39(8):1404-1408. LI Xiaohong, WANG Xiaochuan, KANG Yong, et al. Energy characteristic and dissipation in transient process of hydraulic cutting seams system in coal seam[J]. Journal of China Coal Society, 2014, 39(8): 1404-1408.
[11] 袁波,康勇,李晓红,等.煤层水力割缝系统性能瞬变特性研究[J].煤炭学报,2013,38(12):2153-2157. YUAN Bo, KANG Yong, LI Xiaohong, et al. Experimental study on transient characteristics of hydraulic cutting seams system in coal seam[J]. Journal of China Coal Society, 2013, 38(12): 2153-2157.
[12] 吕有厂.穿层深孔控制爆破防治冲击型突出研究[J].采矿与安全工程学报,2008(3):337-340. LV Yuchang. Preventing rock burst by using deep crossing-hole controlled blasting[J]. Journal of Mining & Safety Engineering, 2008(3): 337-340.
[13] 郭德勇,裴海波,宋建成,等.煤层深孔聚能爆破致裂增透机理研究[J].煤炭学报,2008,33(12):1381. GUO Deyong, PEI Haibo, SONG Jiancheng, et al. Study on spliting mechanism of coal bed deep-hole cumulative blasting to improve permeability[J]. Journal of China Coal Society, 2008, 33(12): 1381.
[14] 李守国.高压空气爆破煤层增透关键技术与装备研发[J].煤炭科学技术,2015,43(2):92-95. LI Shouguo. Key technology and equipment research and development of improving coal seam permeability by high pressure air blasting[J]. Coal Science and Technology, 2015, 43(2): 92-95.
[15] 高坤.高能气体冲击煤体增透技术实验研究及应用[D].阜新:辽宁工程技术大学,2013. [16] Mcdaniel B, Grundmann S, Kendrick W, et al. Field applications of cryogenic nitrogen as a hydraulic-fracturing fluid[J]. Journal of Petroleum Technology, 1998, 50(3): 38-39. [17] 王兆丰,李豪君,陈喜恩,等.液态CO2相变致裂煤层增透技术布孔方式研究[J].中国安全生产科学技术,2015,11(9):11-16. WANG Zhaofeng, LI Haojun, CHEN Xien, et al. Study on hole layout of liquid CO2 phase-transforming fracture technology for permeability improvement of coal seam[J]. Journal of Safety Science and Technology, 2015, 11(9): 11-16.
[18] 楚亚培.液氮冻融煤体孔隙裂隙结构损伤演化规律及增渗机制研究[D].重庆:重庆大学,2020. [19] 文虎,李珍宝,王旭,等.液态CO2溶浸作用下煤体孔隙结构损伤特性研究[J].西安科技大学学报,2017,37(2):149. WEN Hu, LI Zhenbao, WANG Xu, et al. Characteristics of coal porous structure damage subjected to liquid carbon dioxide cooling[J]. Journal of Xi’an University of Science and Technology, 2017, 37(2): 149.
[20] 王俐,杨春和.不同初始饱水状态红砂岩冻融损伤差异性研究[J].岩土力学,2006,27(10):1772-1776. WANG Li, YANG Chunhe. Studies on different initial water-saturated red sandstones’ different damaged extension under condition of frost and thaw[J]. Rock and Soil Mechanics, 2006, 27(10): 1772-1776.
[21] 杨更社,张全胜,任建喜,等.冻结速度对铜川砂岩损伤CT数变化规律研究[J].岩石力学与工程学报,2004(24):4099-4104. YANG Gengshe, ZHANG Quansheng, REN Jianxi, et al. Study on the effect of freezing rate on the damage CT values of Tongchuan sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2004(24): 4099-4104.
[22] 周科平,李杰林,许玉娟,等.冻融循环条件下岩石核磁共振特性的试验研究[J].岩石力学与工程学报,2012,31(4):731. ZHOU Keping, LI Jielin, XU Yujuan, et al. Experimental study of NMR characteristics in rock under freezing and thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 731.
[23] ZHANG Dongming, CHU Yapei, LI Shujian, et al. Petrophysical characterization of high-rank coal by nuclear magnetic resonance: a case study of the Baijiao coal reservoir, SW China[J]. Royal Society Open Science, 2018, 5(12): 181411. -
期刊类型引用(2)
1. 周西华,周露函,姜延航,白刚,刘天祥,王学鹏. 多因素对液态CO_2冻融致裂煤体的影响试验研究. 中国安全科学学报. 2023(07): 58-67 . 百度学术
2. 沈浩,徐拴海,张宏刚,田延哲. 冻融循环对露天矿不同类型边坡的影响研究. 煤炭技术. 2022(05): 111-114 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 36
- HTML全文浏览量: 0
- PDF下载量: 22
- 被引次数: 5