榆神府矿区富油煤煤相及孔隙结构特征试验研究
Coal facies characteristics and pore structure response of oil-rich coal in Yushenfu Mining Area
-
摘要: 为研究成煤环境对煤样孔隙结构的影响,以榆神府矿区柠条塔、张家峁煤矿富油煤为研究对象,开展显微煤岩组分定量与煤相分析,通过压汞法分析其孔径分布与孔隙结构特征,探究了该区域富油煤孔隙结构特征与煤相存在的内在联系。研究发现:榆神府矿区富油煤沼泽类别以湿地草本沼泽相和干燥森林沼泽相为主,动水能力较弱;立足于柠条塔、张家峁富油煤孔隙结构对比,柠条塔2-2煤小孔、中孔、大孔发育较为均衡,而张家峁4-2煤中的小孔、中孔发育较好,大孔发育相对较差;对榆神府矿区富油煤而言,在相似煤阶条件下,其TPI煤相特征主要控制着大孔发育状况,并间接影响着煤储层后期低温热解效率。Abstract: To study the influence of coal-forming environment on the pore structure of coal samples, we take the oil-rich coals from Ningtiaota and Zhangjiamao coal mines in Yushenfu Mining Area as the research object, carry out quantitative analysis of microcoal composition and coal facies, and determine the pore size distribution and pore structure characteristics of the oil-rich coal in this area by mercury intrusion method. Finally, the response mechanism of coal facies to coal pore structure is revealed. The results of the study found that: Shenmu oil-rich coal swamps are dominated by wetland herbaceous swamp facies and dry forest swamp facies, with weak hydrodynamic capacity; based on the comparison of the pore structure of Ningtiaota and Zhangjiamao oil-rich coals, the small, medium, and macropores in Ningtiaota 2-2 coal are more balanced, Zhangjiamao 4-2 coal has better small and mesopores and the development of macropores is relatively poor; for the oil-rich coal in the Yushenfu Mining Area, under similar coal rank conditions, its TPI coal facies characteristics mainly control the development of macropores, and indirectly affect the late-stage low-temperature pyrolysis efficiency of coal reservoirs.
-
Keywords:
- oil-rich coal /
- pore structure /
- coal facies /
- mercury intrusion method /
- facies control effect
-
-
[1] 王双明,孙强,乔军伟,等.论煤炭绿色开采的地质保障[J].煤炭学报,2020,45(1):8-15. WANG Shuangming, SUN Qiang, QIAO Junwei, et al. Geological guarantee of coal green mining[J]. Journal of China Coal Society, 2020, 45(1): 8-15.
[2] 中国石油集团经济技术研究院.2019年国内外油气行业发展报告[M].北京:石油工业出版社,2020. [3] DIESSEL C F K. Utility of coal petrology for sequence-stratigraphic analysis[J]. International Journal of Coal Geology, 2007, 70(1): 3-34. [4] 杨海平,陈汉平,鞠付栋,等.热解温度对神府煤热解与气化特性的影响[J].中国电机工程学报,2008(8):40-45. YANG Haiping, CHEN Hanping, JU Fudong, et al. Influence of temperature on coal pyrolysis and char gasification[J]. Proceedings of the Chinese Society for Electrical Engineering, 2008(8): 40-45.
[5] Wen H, Lu J H, Xiao Y, Deng J. Temperature dependence of thermal conductivity, diffusion and specific heat capacity for coal and rocks from coalfield[J]. Thermochimica Acta, 2015, 619: 41-7. [6] 王金月.巨厚煤层成煤环境及其对储层孔隙特征的控制-以二连盆地胜利煤田为例[D].徐州:中国矿业大学,2018. [7] 苗明.沉积环境对鹤岗煤田煤岩储集空间的影响[J].煤炭科学技术,2016,44(11):160-166. MIAO Ming. Influences of depositional environment on reservoir space of coal in Hegang Coalfield[J]. Coal Science and Technology, 2016, 44(11): 160-166.
[8] 李玲,姚海鹏,李正,等.二连盆地低阶煤储层物性特征及评价体系研究[J].中国煤炭,2019,45(4):43. LI Ling, YAO Haipeng, LI Zheng, et al. Study on coal reservoir physical characteristics and evaluation system of low-rank coal in Erlian Basin[J]. China Coal, 2019, 45(4): 43.
[9] 刘大锰,姚艳斌,刘志华,等.华北安鹤煤田煤储层特征与煤层气有利区分布[J].现代地质,2008(5):787. LIU Dameng, YAO Yanbin, LIU Zhihua, et al. Coal reservoir characteristics and perspective and target areas for CBM in the Anyang-Hebi Coal Field, North China[J]. Geoscience, 2008(5): 787.
[10] 宋强.富油煤热解与赤铁矿石还原协同处理基础研究[D].北京:中国矿业大学(北京),2019. [11] 翟迎铨,李猛,潘结南,等.平顶山煤田南部二叠系煤层煤相演化规律研究[J].煤炭科学技术,2020,48(6):191-198. ZHAI Yingquan, LI Meng, PAN Jienan, et al. Study on coal facies evolution law of permian coal seam in south Pingdingshan Coalfield[J]. Coal Science and Technology, 2020, 48(6): 191-198.
[12] ZHAO L, QIN Y, CAI C, et al. Control of coal facies to adsorption-desorption divergence of coals: A case from the Xiqu Drainage Area, Gujiao CBM Block, North China[J]. International Journal of Coal Geology, 2017, 171: 169-184. [13] 李玉坤,李广.吐哈盆地沙尔湖煤田煤质煤岩特征及煤相分析[J].煤炭科学技术,2019,47(5):198-205. LI Yukun, LI Guang. Analysis on quality, petrography and facies of coal seam in Shaerhu Coalfield of Turpan-Hami Basin[J]. Coal Science and Technology, 2019, 47(5): 198-205.
[14] PATRICIA G R O, BLANDóN A, PEREA C, et al. Petrographic characterization, variations in chemistry, and paleoenvironmental interpretation of Colombian coals[J]. International Journal of Coal Geology, 2020, 227: 103516. [15] 张茂省,卢娜,陈劲松.陕北能源化工基地地下水开发的植被生态效应及对策[J].地质通报,2008(8):1299-1312. ZHANG Maosheng, LU Na, CHEN Jinsong. Ecological effects of vegetations during groundwater exploitation in the Northern Shaanxi Energy & Chemical Industry Base, China[J]. Geological Bulletin of China, 2008(8): 1299-1312.
[16] 康英.柠条塔矿井水文地质特征研究[D].西安:西安科技大学,2014. [17] 马有宽,苗彦平,绳军峰.张家峁煤矿4~(-2)煤顶板结构分析[J].陕西煤炭,2011,30(5):11-12. [18] 唐初阳.影响生物质和煤共热解油产率和品质的机理研究[D].上海:华东理工大学,2017. [19] 马栋,白效言,李文博.内旋式移动床中神木煤中低温热解特性分析[J/OL].煤炭学报:1-15.[2021-06-18].https://doi.org/10.13225/j.cnki.jccs.2020.0358. MA Dong, BAI Xiaoyan, LI Wenbo. Analysis of medium and low temperature pyrolysis characteristics of shenmu coal in internal rotating moving bed[J/OL]. Journal of China Coal Society: 1-15[2021-06-18].https://doi.org/10.13225/j.cnki.jccs.2020.0358.
[20] 周琦.折流内构件移动床新疆淖毛湖煤热解实验研究[J/OL].煤炭学报:1-10.[2021-06-17].https://doi.org/10.13225/j.cnki.jccs.2020.0603. ZHOU Qi. Experimental study on the pyrolysis of Xinjiang Naomaohu coal in a moving bed with baffled internals[J/OL]. Journal of China Coal Society:1-10.[2021-06-17].https://doi.org/10.13225/j.cnki.jccs.2020.0603.
[21] Li X, Hayashi J, Li C, et al. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(12): 1700-1707. [22] Arenillas A, Pevida C, Rubiera F, et al. Characterisation of model compounds and a synthetic coal by TG/MS/FTIR to represent the pyrolysis behaviour of coal[J]. Journal of Analytical and Applied Pyrolysis, 2004, 71(2): 747-763. [23] 张春旺,李绍泉.低渗透煤的孔隙结构特征及其瓦斯吸附特性[J].煤矿安全,2019,50(1):29-32. ZHANG Chunwang, LI Shaoquan. Pore structure and gas adsorption characteristics of coal with low permeability[J]. Safety in Coal Mines, 2019, 50(1):29-32.
[24] WILDMAN J, DERBYSHIRE F J F. Origins and functions of macroporosity in activated carbons from coal and wood precursors[J]. 1991, 70(5): 655-61. [25] 张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001(1):40-44. ZHANG Hui. Genetical type of proes in coal reservoir and its research significance[J]. Journal of China Coal Society, 2001(1): 40-44.
[26] 陆国青,杨少春,张逸帆,等.马海东地区下干柴沟组下段砂岩储层孔隙结构特征及控制因素[J].大庆石油地质与开发,2021,40(2):20-29. LU Guoqing, YANG Shaochun, ZHANG Yifan, et al. Pore structure characteristics and their controlling factors of sandstone reservoirs in the lower member of Xiaganchaigou Formation in Mahaidong Area[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(2): 20-29.
-
期刊类型引用(3)
1. 王双明,孙强,胡鑫,葛振龙,耿济世,薛圣泽,师庆民. 不同气氛下富油煤受热裂隙演化及热解动力学参数变化. 煤炭科学技术. 2024(01): 15-24 . 百度学术
2. 赵伟波,刘洪林,王怀厂,刘德勋,李晓波. 煤层微观孔隙特征及沉积环境对孔隙结构的控制作用-以鄂尔多斯盆地8号煤层为例. 煤炭科学技术. 2024(06): 142-154 . 百度学术
3. 郭平,王廷辉,胡波,陈婷婷. 富油煤的基础煤质特征及其沉积环境特征分析. 当代化工研究. 2024(22): 33-35 . 百度学术
其他类型引用(1)
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量:
- 被引次数: 4