孤岛煤柱条件下冲击危险工作面终采线位置优化设计
Research on optimal design of stop line position in working face with rock burst hazard under condition of isolated coal pillar
-
摘要: 针对姚桥煤矿采区下山孤岛保护煤柱,工作面回采末期微震释放总能量、频次持续上升,现场冲击危险性增强的现象;基于理论分析和数值模拟分析了孤岛煤柱区应力分布形态及工作面开采前后煤柱区应力分布特征;结合工作面开采条件,优化了工作面终采线位置。研究表明:工作面回采前采区孤岛煤柱应力分布特征呈“马鞍形”分布,当工作面走向开采尺度大于920 m时,煤柱区支承应力曲线由“马鞍型”逐渐向“单峰型”过渡,煤柱区应力集中系数从2.20升高到2.56。现场实践表明:工作面走向实际回采尺度900 m,比原设计停采线提前30 m停止回采,该工作面区段保护煤柱宽度由175 m增加至205 m,煤柱区应力呈“马鞍形”分布,有效保障了工作面安全生产,降低了采区保护煤柱区应力集中度,为后续工作面开采创造了有利条件。Abstract: Aiming at the condition of the downhill islanding protection coal pillar in Yaoqiao Coal Mine, the total micro-seismic energy and the frequency continue to rise at the end of the mining face, and the on-site rock burst risk increases. Based on theoretical analysis and numerical simulation, the stress distribution pattern of the coal pillar area in the island and the characteristics of the stress distribution in the coal pillar area before and after the mining of the working face were analyzed. According to the working face mining conditions, the stop line position of working face was optimized. The study shows that the stress distribution characteristics of isolated coal pillar before the mining of the working face are saddle shape. When the mining scale of the working face is greater than 920 m, the supporting stress curve of the coal pillar area gradually changes from saddle shape to a single-peak pattern, and the stress concentration coefficient of the coal pillar area increases from 2.20 to 2.56. Field practice shows that the actual mining scale of the working face is 900 m, which is 30 m ahead of the original design stopping line. The width of the protective coal pillar in the working face section increases from 175 m to 205 m, and the stress in the coal pillar area is saddle-shaped. It effectively ensures the safety of the working face, reduces the stress concentration in the protective coal pillar area of the mining area, and creates favorable conditions for the subsequent mining of the working face.
-
Keywords:
- stress distribution /
- isolated coal pillar /
- stop line design /
- rock burst /
- numerical simulation
-
-
[1] 朱斯陶,姜福兴,刘金海,等.我国煤矿整体失稳型冲击地压类型、发生机理及防治[J].煤炭学报,2020,45(11):3667-3677. ZHU Sitao, JIANG Fuxing, LIU Jinhai, et al. Types, occurcenec mechanism and prevention of overall instability induced rockbursts in China coal mines[J]. Journal of China Coal Society, 2020, 45(11): 3667-3677.
[2] 谢和平.深部岩体力学与开采理论研究进展[J].煤炭学报,2019,44(5):1283-1305. XIE Heping. Research review of the state key research development program of China: deep rock mechanics and mining theory[J]. Journal of China Coal Society, 2019, 44(5): 1283-1305.
[3] 朱广安.深地超应力作用效应及孤岛工作面整体冲击失稳机理研究[D].徐州:中国矿业大学,2017. [4] 齐庆新,李一哲,赵善坤,等.我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J].煤炭科学技术,2019,47(9):1-40. QI Qingxin, LI Yizhe, ZHAO Shankun, et al. Seventy years development of coal mine rockburst in China: establishment and consideration of theory and technology system[J]. Coal Science and Technology, 2019, 47(9): 1-40.
[5] 窦林名,冯龙飞,蔡武,等.煤岩灾变破坏过程的声震前兆识别与综合预警模型研究[J].采矿与安全工程学报,2020,37(5):960-968. DOU Linming, FENG Longfei, CAI Wu, et al. Seismo-acoustic precursor identification and comprehensive war-ning model for the catastrophic failure process of coal and rock[J]. Journal of Mining & Safety Engineering, 2020, 37(5): 960-968.
[6] 齐庆新,赵善坤,李海涛,等.我国煤矿冲击地压防治的几个关键问题[J].煤矿安全,2020,51(10):135. QI Qingxin, ZHAO Shankun, LI Haitao, et al. Several key problems of coal bump prevention and control in China’s coal mines[J]. Safety in Coal Mines, 2020, 51(10): 135.
[7] 潘俊锋,齐庆新,刘少虹,等.我国煤炭深部开采冲击地压特征、类型及分源防控技术[J].煤炭学报,2020, 45(1):111-121. PAN Junfeng, QI Qingxin, LIU Shaohong, et al. Characteristics, types and prevention and control technology of rock burst in deep coal mining in China[J]. Journal of China Coal Society, 2020, 45(1):111-121.
[8] 王高昂,朱斯陶,姜福兴,等.千米深井大巷孤立煤体整体失稳冲击机理及防治研究[J].采矿与安全工程学报,2019,36(5):968-976. WANG Gao’ang, ZHU Sitao, JIANG Fuxing, et al. Mechanism of rock burst induced by overall instabilityof isolated coal and its prevention in large well at thousands-kilometer underground[J]. Journal of Mining & Safety Engineering, 2019, 36(5): 968-976.
[9] 朱广安,窦林名,丁自伟,等.孤岛工作面采前冲击危险性预评估研究[J].岩土工程学报,2018,40(05):819-827. ZHU Guang’an, DOU Linming, DING Ziwei, et al. Pre-evaluation for rock burst risks in island longwall panel before mining[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 819-827.
[10] 刘长友,黄炳香,孟祥军,等.超长孤岛综放工作面支承压力分布规律研究[J].岩石力学与工程学报,2007(S1):2761-2766. LIU Changyou, HUANG Bingxiang, MENG Xiangjun, et al. Research on abutment pressure distribution law ofoverlength isolated fully-mechanized top coal cavingface[J]. Chinese Journal of Rock Mechanics and Engineering, 2007(S1): 2761-2766.
[11] 韩亮,辛崇伟,梁开山,等.厚硬岩层控制下不规则断层煤柱冲击危险性研究[J].煤炭工程,2018,50(9):79-82. HAN Liang, XIN Chongwei, LIANG Kaishan et al. Burst hazard analysis of irregular fault coal pillarcontrolled by thick hard rock stratum[J]. Coal Engineering, 2018, 50(9): 79-82.
[12] 孙庆先.基于形状指数和面积的不规则煤柱稳定性分析[J].煤矿安全,2017,48(12):176-178. SUN Qingxian. Stability analysis of irregular coal pillars based on its shape index and area[J]. Safety in Coal Mines, 2017, 48(12): 176-178.
[13] 李国君.抚顺矿区冲击地压综合防治技术[J].煤矿安全,2020,51(10):144-151. LI Guojun. Comprehensive prevention and control technology of rock burst in fushun mining area[J]. Safety in Coal Mines, 2020, 51(10): 144-151.
[14] 王志强,王鹏,石磊,等.基于沿空巷道围岩应力分析的防冲机理研究[J].中国矿业大学学报,2020,49(6):1046-1056. WANG Zhiqiang, WANG Peng, SHI Lei, et al. Research on prevention of rock burst based on stress analysis of surrounding rock of gob-side entry[J]. Journal of China University of Mining & Technology, 2020, 49(6): 1046-1056.
[15] 谭云亮,郭伟耀,辛恒奇,等.煤矿深部开采冲击地压监测解危关键技术研究[J].煤炭学报,2019,44(1):160-172. TAN Yunliang, GUO Weiyao, XIN Hengqi, et al. Key technology of rock burst monitoring and control in deep coal mining[J]. Journal of China Coal Society, 2019, 44(1): 160-172.
[16] 周辉,渠成堃,黄健利,等.基于模型试验的深部煤层合理停采线结构分析[J].岩石力学与工程学报,2017,36(10):2373. ZHOU Hui, QU Chengkun, HUANG Jianli, et al. Analysis of rational shape of stop line in deep coal seambased on model test[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2373.
[17] 崔树江.塔山矿综放工作面停采线合理煤柱宽度实测[J].煤矿安全,2015,46(3):190-193. CUI Shujiang. Actual measurement for reasonable coal pillar width of fully mechanized caving face stopping line of tashan coal mine[J]. Safety in Coal Mines, 2015, 46(3): 190-193.
[18] 陈科,柏建彪,胡忠超,等.超前支承压力对下山的影响分析及合理停采线位置确定[J].煤矿开采,2010, 15(1):35-37. CHEN Ke, BAI Jianbiao, HU Zhongchao, et al. Analysis of influence of advance abutment pressure on dip and rational end-mining line selection[J]. Coal Mining Technology, 2010, 15(1): 35-37.
[19] 窦林名,姜耀东,曹安业,等.煤矿冲击矿压动静载的“应力场-震动波场”监测预警技术[J].岩石力学与工程学报,2017,36(4):803-811. DOU Linming, JIANG Yaodong, CAO Anye, et al. Monitoring and pre-warning of rockburst hazard with technology of stress fieldand wave field in underground coalmines[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 803-811.
[20] 李鹏.残煤长壁工作面前方煤柱稳定性研究[D].太原:太原理工大学,2013. -
期刊类型引用(5)
1. 边戈,顾倩悦,高红兵,曹安业,李煜,徐天,刘彦强,何俊江. 非对称大巷煤柱区冲击地压防治技术研究. 煤炭技术. 2025(03): 74-79 . 百度学术
2. 葛庆,孙振于,孙文杰,王聪聪,韩泽鹏. 强冲击危险孤岛工作面巷道外错岩巷布置防冲研究. 煤炭技术. 2023(04): 89-93 . 百度学术
3. 肖江,李德桃,张成,陈航挺,孙亚超,王怡辉. 浅埋煤层大巷保安煤柱尺寸优化研究. 煤炭技术. 2023(08): 79-83 . 百度学术
4. 万广绪,于秀慧,李瑶. 工作面停采外侧不规则煤柱宽度优化分析. 山东煤炭科技. 2023(08): 72-74 . 百度学术
5. 聂飞. 大巷孤岛煤柱应力分布规律的研究与实践. 山西冶金. 2022(07): 44-45+49 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 20
- HTML全文浏览量: 0
- PDF下载量: 10
- 被引次数: 6