高温烘烤对纳林庙岩石磁性的影响实验研究
Experimental study on influence of high temperature baking on magnetic properties of Nalinmiao rock
-
摘要: 磁异常是煤田火灾重要的地球物理特征,为研究高温烘烤过后岩石的磁性变化规律,对磁法在火区圈定应用的中提供有效指导,利用磁化率测定系统测定了纳林庙3-1煤顶板砂岩的磁化率,分别研究了温度、粒径以及磁场强度对样品磁化率的影响。结果表明:在25~600 ℃整体范围内烘烤形成的烧变岩的磁化率整体上随温度增高而增大,随外界磁感应强度变大而减小。烘烤温度小于400 ℃时,样品粒径越小磁化率越大;通过X射线衍射实验分析了高温烘烤对岩石成分与结构的影响,表明岩石高温烘烤的过程中,菱铁矿(FeCO3)被氧化成铁磁性物质磁铁矿(Fe3O4),这是烧变岩相对常温岩石磁性增强的主要原因。Abstract: Magnetic anomaly is an important geophysical feature of coal field fires. In order to study the magnetic change law of high-temperature heated rocks and provide effective guidance for the application of magnetic method in the delineation of fire zones, the susceptibility measurement system was used to determine the magnetic susceptibility of Nalinmiao 3-1 coal roof sandstone. The effects of temperature, particle size, and magnetic field strength on the magnetic susceptibility of the samples were studied. The results show that the magnetic susceptibility of the burnt rock in the whole range of 25 ℃ to 600 ℃ increases with the increase of temperature, and decreases with the increase of the external magnetic induction intensity. When the heated temperature is less than 400 °C, the smaller the particle size of the sample, the greater the magnetic susceptibility; the effect of high temperature baking on the composition and structure of the rock is analyzed by X-ray diffraction experiments, indicating that during the high temperature baking of the rock, FeCO3 is oxidized into Fe3O4, which is the main reason why burnt rock is more magnetic than normal rock.
-
Keywords:
- burnt rock /
- magnetic anomaly /
- fire source exploration /
- magnetic susceptibility /
- coalfield fire
-
-
[1] 侯慎健,王佟,张博,等.对新时代中国煤炭资源勘查工作发展思路的探讨[J].西安科技大学学报,2019, 39(2):341-346. HOU Shenjian, WANG Dong, ZHANG Bo, et al. Development of China’s coal rsources exploration in the new era[J]. Journal of Xi’an University of Science and Technology, 2019, 39(2): 341 -346.
[2] 邓军,李贝,王凯,等.中国煤火灾害防治技术研究现状及展望[J].煤炭科学技术,2016,44(10):1-7. DENG Jun, LI Bei, WANG Kai, et al. Research status and prospect of coal fire disaster prevention technology in China[J]. Coal Science and Technology, 2016, 44(10): 1-7.
[3] 张建民,管海晏,曹代勇,等.中国地下煤火研究与治理[M].北京:煤炭工业出版社,2008. [4] Shao Z, Wang D, Wang Y, et al. Theory and application of magnetic and self-potential methods in the detection of the Heshituoluogai coal fire, China[J]. Journal of Applied Geophysics, 2014, 104: 64-74. [5] Sternberg R, Lippincott C. Magnetic surveys over clinkers and coal seam fires in Western North Dakota[C]// proceedings of the 2004 Denver Annual Meeting, F, 2004. [6] 朱晓颖,于长春,熊盛青,等.磁法在煤火探测中的应用[J].物探与化探,2007(2):115-119. ZHU Xiaoying, YU Changqing, XIONG Shengqing, et al. The application of the magnetic method to the detection of underground coal fires[J]. Geophysical and Geochemical Exploration, 2007(2): 115-119.
[7] Ping X. Digital elevation model extraction from ASTER in support of the coal fire and environmental research project, China[D]. NetherLands: MSc Thesis, ITC, NetherLands, 2003. [8] 金永飞,邓军,许延辉,等.测氡法探测地下煤火技术研究与应用[J].西安科技大学学报,2010,30(6):647. JIN Yongfei, DENG Jun, XU Yanhui, et al. Application of radon detecton method in detecting of underground coal fire[J]. Journal of Xi’an University of Science and Technology, 2010, 30(6): 647.
[9] 张辛亥,牛恒,费金彪.测氡法探测煤层自燃火源在巴依里矿的应用[J].煤矿安全,2009,40(7):29-30. ZHANG Xinhai, NIU Heng, FEI Jinbiao. Using measuring radon method to detect spontaneous fire location in Bayili coal mine[J]. Safety in Coal Mines, 2009, 40(7): 29-30.
[10] 费金彪,文虎,金永飞.测氡法在浅埋煤层火区探测中的应用[J].西安科技大学学报,2018,38(1):26. FEI Jinbiao, WEN Hu, JIN Yongfei. Application of radon method in detection of fire area in shallow coal seam[J]. Journal of Xi’an University of Science and Technology, 2018, 38(1): 26.
[11] 王刚.测氡法和红外热成像法在小窑区火源位置探测的综合应用[J].西安科技大学学报,2015,35(5):573-578. WANG Gang. Application of radon measurement and infrared thermal imaging method in the detecting fire area of small coal Kiln[J]. Journal of Xi’an University of Science and Technology, 2015, 35(5): 573-578.
[12] Elick Jennifer-M. Mapping the coal fire at Centralia, Pa using thermal infrared imagery[J]. International Journal of Coal Geology, 2011, 87(3): 197-203. [13] Ide Taku-S, Crook N, Orr jr. et al, Magnetometermeasurements to characterize a subsurface coal fire[J]. International Journal of Coal Geology, 2011, 87(3): 190-196. [14] 王文正,马李洋,路世远,等.煤火区多层梯度烧变岩磁异常正演研究[J].科学技术与工程,2013,13(20):5924-5926. WANG Wenzheng, MA Liyang, LU Shiyuan, et al.Forward modeling for magnetic anomaly of multilayer burnt rocks in coal fire area[J]. Science Technology and Engineering, 2013, 13(20): 5924-5926.
[15] LIU Jiang, CUI Jiangwei, XUE Guoqiang, et al. Determining the spontaneous combustion boundary of Northern Shaanxi Coal Seam using high precision magnetic method[J]. Advances in Geosciences, 2019, 9(5): 360-367. [16] 许满贵,申敬杰,贺清.煤自燃危险区域磁法判定技术及应用[J].矿业安全与环保,2014,41(2):41-44. XU Mangui, SHEN Jingjie, HE Qing. Magnetic prospecting technology for dangerous coal spontaneous combustion area and its applications[J]. Mining safety & Environmental protection, 2014, 41(2): 41-44.
[17] 陈小龙,任金礼.高精度磁测在陕北煤田火烧区的应用[J].陕西地质,2013,31(2):76-80. CHEN Xiaolong, REN Jinli. High-precision magnetic survey used in coal-field burning areas of northern Shaanxi Province[J]. Geology of Shaanxi, 2013, 31(2): 76-80.
[18] 林安利,贺建,张志高,等.高精度弱磁材料磁化率测量仪及其测量方法的研究[J].计量技术,2009(6):11-15. LIN Anli, HE Jian, ZHANG Zhigao. Studies on the high accuracy magnetic measuring instrument and the measuring method of feebly magnetic materials[J]. Measurement technique, 2009(6): 11-15.
计量
- 文章访问数: 11
- HTML全文浏览量: 0
- PDF下载量: 4