不同变质程度煤体孔隙结构非均质性表征
Heterogeneity characterization of coal pore structure with different metamorphic degrees
-
摘要: 采用多重分形理论,对不同变质程度煤样的低温液氮吸附实验数据进行研究,探讨煤样孔隙多重分形特征、分形参数与孔隙参数和变质程度之间的关系。结果表明:不同变质程度煤样孔径分布均存在明显的多重分形特征,随着变质程度的增加,煤样的微孔比表面积占比逐渐增大,且比表面积占比最高的孔径段随变质程度的升高而降低;煤样中孔径越小非均质性越明显,较大孔径分布较均一,煤样孔隙的联通性与变质程度无明显相关关系;奇异指数a0与谱宽△a均与变质程度呈正相关关系,而参数Rd与变质程度呈反相关关系,即变质程度越高煤样内部孔径分布越不均匀,且煤样内部小概率子集个数占有率越低。Abstract: The experimental data of low temperature liquid nitrogen adsorption for coal sample with different metamorphic degrees was researched with multi-fractal theory. Then the relationship between pore multi-fractal characteristics of coal samples, fractal parameters, pore parameters and metamorphic grade was discussed. The results show that, the pore size distribution of different rank coals has obvious multi-fractal characteristic. With the increase of metamorphic degree, the specific surface area ratio of micro-pores in coal samples increases gradually. The pore section that has the highest level of specific surface area will decrease with the increase of metamorphic grade. The smaller the pore size in coal sample, the more obvious the heterogeneity and the larger pores distributed evenly. There was no significant correlation between the connectivity and metamorphic grade of coal pores. Both the singular index a0 and spectrum width △a had a positive correlation with metamorphic grade, but the parameter Rd had negative correlation with metamorphic grade. In other words, the higher the metamorphic degree, the more uneven the pore size distribution in the coal sample, and the lower the share of the number of small probability subset in the coal sample.
-
-
[1] 李祥春,李忠备,张良,等.不同煤阶煤样孔隙结构表征及其对瓦斯解吸扩散的影响[J].煤炭学报,2019, 44(S1):142-156. LI Xiangchun, LI Zhongbei, ZHANG Liang, et al. Pore structure characterization of various rank coals and its effect on gas desorption and diffusion[J]. Journal of China Coal Society, 2019, 44(S1): 142-156.
[2] Zhao P Q, Wang X X, Cai J C, et al. Multifractal analysis of pore structure of Middle Bakken formation using low temperature N2 adsorption and NMR measurements[J]. Journal of Petroleum Science and Engineering, 2019, 176(1): 312-320. [3] Nie Baisheng, Liu Xianfeng, Yang Longlong, et al. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy[J]. Fuel, 2015, 158: 908-917. [4] 聂百胜,王科迪,樊堉,等.基于小角X射线散射技术计算不同孔形的煤孔隙特征比较研究[J].矿业科学学报,2020,5(3):284-290. NEI Baisheng, WANG Kedi, FAN Yu, et al. The comparative study on calculation of coal pore characteristics of different pore shapes based SAXS[J]. Journal of Mining Science and Technology, 2020, 5(3): 284-290.
[5] 杨昌永,常会珍,邵显华,等.扫描电镜下不同煤体结构煤微孔隙特征研究[J].煤炭科学技术,2019,47(12):194-200. YANG Changyong, CHANG Huizhen, SHAO Xianhua, et al. Study on micro-pore characteristics of structural coal in different coal bodies under scanning electron microscopy[J]. Coal Science and Technology, 2019, 47(12): 194-200.
[6] 杨甫,贺丹,马东民,等.低阶煤储层微观孔隙结构多尺度联合表征[J].岩性油气藏,2020,32(3):14-23. YANG Fu, HE Dan, MA Dongmin, et al. Multi-scale joint characterization of micro-pore structure of low-rank coal reservoir[J]. Lithologic Reservoirs, 2020, 32(3): 14-23.
[7] 陈刘瑜,李希建,沈仲辉,等.贵州北部突出煤的孔隙结构及分形特征研究[J].中国安全科学学报,2020, 30(2):66-72. CHEN Xiangjun, ZHAO San, SI Zhaoxia, et al. Fractal characteristics of pore structure of coal with different metamorphic degrees and its effect on gas adsorption characteristics[J]. Coal Science and Technology, 2020, 48(2): 118-124.
[8] 郭海军,王凯,崔浩,等.型煤孔裂隙结构及其分形特征实验研究[J].中国矿业大学学报,2019,48(6):1206-1214. GUO Haijun, WANG Kai, CUI Hao, et al. Experimental investigation on the pore and fracture structure of the reconstructed coal and its fractal characteristics[J]. Journal of China University of Mining & Technology, 2019, 48(6): 1206-1214.
[9] 周三栋,刘大锰,蔡益栋,等.低阶煤吸附孔特征及分形表征[J].石油与天然气地质,2018,39(2):373. ZHOU Sandong, LIU Dameng, CAI Yidong, et al. Characterization and fractal nature of adsorption pores in low rank coal[J]. Oil & Gas Geology, 2018, 39(2): 373.
[10] 陈颙.分形几何学[M].北京:地震出版社,1998. [11] 李彤.多重分形原理及若干应用[D].北京:北京交通大学,2008. [12] Piotr Baranowski, Magdalena Gos, Jaromir Krzyszczak. Multifractality of meteorological time series for Poland on the base of MERRA-2 data[J]. Chaos, Solitons & Fractals, 2019, 127(10): 318-333. [13] Dhevendra Alagan Palanivel, Sivakumaran Natarajan, Sainarayanan Gopalakrishnan. Multifractal-based lacunarity analysis of trabecular bone in radiography[J]. Computers in Biology and Medicine, 2020, 116(2): 1-7. [14] 邓存宝,凡永鹏.基于多重分形理论的工作面煤与瓦斯突出预测[J].辽宁工程技术大学学报(自然科版),2017,36(9):903-908. DENG Cunbao,FAN Yongpeng. Coal and gas outburst prediction in working face based on multi-fractal theory[J]. Journal of Liaoning Technical University (Natural Science Edition), 2017, 36(9): 903-908.
[15] 刘杰,王恩元,李忠辉,等.煤样破裂表面电位多重分形特征[J].煤炭学报,2013,38(9):1616-1620. LIU Jie, WANG Enyuan, LI Zhonghui, et al. Multi-fractal characteristics of surface potential of coal during the fracture[J]. Journal of China Coal Society, 2013, 38(9): 1616-1620.
[16] 郭德勇,郭晓洁,李德全. 构造变形对烟煤级构造煤微孔-中孔的作用[J].煤炭学报,2019,44(10):3135-3144. GUO Deyong,GUO Xiaojie,LI Dequan. Effects of tectonic deformation on micropore-mesopore of bituminous deformed coal[J]. Journal of China Coal Society, 2019, 44(10): 3135-3144.
[17] Halsey T C, Hensen M H, Kadanoff L P, et al. Fractal measures and their singularities: the characterization of strange sets[J]. Nuclear Physics B - Proceedings Supplements, 1987, 2(12): 501-511. [18] Ge X, Fan Y, Li J, et al. Pore structure characterization and classification using multifractal theory-an application in Santanghu Basin of western China[J]. Journal of Petroleum Science and Engineering, 2015, 127(3): 297-304. [19] Martínez F S J, Martín M A, Caniego F J, et al. Multifractal analysis of discretized X-ray CT images for the characterization of soil macropore structures[J]. Geoderma, 2010, 156 (4): 32-42. [20] 戚灵灵,王兆丰,杨宏民,等.基于低温氮吸附法和压汞法的煤样孔隙研究[J].煤炭科学技术,2012,40(8):36-39. QI Lingling, WANG Zhaofeng, YANG Hongmin, et al. Study on porosity of coal samples based on low temperature nitrogen adsorption method and mercury porosimetry[J]. Coal Science and Technology, 2012, 40(8): 36-39.
[21] Peitgen H O,Jürgens H,Saupe D. Chaos and fractals: new frontiers of science[M]. New York: Springer Science & Business Media, 2006. [22] 王民,焦晨雪,李传明,等.东营凹陷沙河街组页岩微观孔隙多重分形特征[J].油气地质与采收率,2019, 26(1):72-79. WANG Min, JIAO Chenxue, LI Chuanming, et al. Multi-fractal characteristics of micro-pores of Shahejie formation shale in Dongying Sag[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 72-79.
-
期刊类型引用(9)
1. 王向阳,李全中,吉小峰,连浩斌,史勇忠,王昱叡. 酸化对不同煤阶煤微纳米孔隙结构影响研究. 煤炭技术. 2024(04): 292-297 . 百度学术
2. 陈静,崔啸,王磊,庞凤岭,关联合. 不同埋深煤体孔隙结构特征及瓦斯吸附特性研究. 矿业研究与开发. 2023(03): 166-171 . 百度学术
3. 李树刚,周雨璇,胡彪,秦雪燕,孔祥国,白杨,张静非. 低阶煤吸附孔结构特征及其对甲烷吸附性能影响. 煤田地质与勘探. 2023(02): 127-136 . 百度学术
4. 肖乾隆,李锦,李伍. 姚桥矿7号煤层垂向孔隙结构及分形特征研究. 中国煤炭地质. 2023(09): 1-13+26 . 百度学术
5. 赵奕博,田水承,黄剑,张铎. 宁夏灵新矿不粘煤的孔隙结构特征及其对CO吸附的影响. 西安科技大学学报. 2023(06): 1071-1078 . 百度学术
6. 谢卫东,王猛,王华,段宏跃. 海陆过渡相页岩气储层孔隙多尺度分形特征. 天然气地球科学. 2022(03): 451-460 . 百度学术
7. 刘立航,胡海燕,王士跞,王涛,詹思媛. 吐哈盆地沙尔湖地区煤岩孔隙分形特征及其对含气性控制. 中国科技论文. 2022(05): 495-501 . 百度学术
8. 肖鹏,杜媛媛. 构造煤微观结构对其吸附特性的影响实验. 西安科技大学学报. 2021(02): 237-245 . 百度学术
9. 宋慧杰. 不同煤吸附甲烷的实验研究. 煤. 2021(12): 77-79 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 28
- HTML全文浏览量: 0
- PDF下载量: 28
- 被引次数: 12