甲烷吸附前后高阶煤煤岩孔隙结构变化特征研究
Change of pore structure for high rank coal before and after methane adsorption
-
摘要: 为了查清甲烷吸附作用对煤岩孔隙结构的影响,对采集自西南多煤层地区的高阶煤开展了30 ℃、最大测试压力12 MPa的甲烷高压等温吸附测试,并对甲烷吸附作用前后煤岩的孔隙结构分别使用氮气探针和二氧化碳探针进行了测试。实验结果表明:高阶煤甲烷等温吸附在低压条件下表现出快速吸附的特征,过剩吸附量在达到最大值后下降;甲烷吸附作用后,煤岩低温液氮吸附滞后环减小,低温二氧化碳吸附量也减小,煤岩孔隙结构发生变化,煤岩中微孔、介孔和大孔的孔容和孔比表面积均下降,微孔孔容和孔比表面积下降明显,且不同孔径孔容、孔比表面积的减少具有分段效应,主要为孔径小于1 nm的微孔和孔径小于8 nm的介孔;高阶煤煤岩孔隙结构的改变与甲烷吸附作用中较高的测试压力有关。Abstract: In order to find out the influence of methane adsorption on the pore structure of coal rock, a high rank coal sample was collected from southwestern China, and the methane adsorption under 30 ℃ with the maximum measurement pressure of 12 MPa was carried out, and the pore structure of the coal sample before and after the methane adsorption was also investigated with the low-pressure nitrogen adsorption and low-pressure carbon dioxide adsorption. The experimental results show that the isothermal adsorption of methane from high-rank coal exhibits the typical characteristics of rapid adsorption at low pressure, and the excess adsorption of coal and rock decreases after the excess adsorption reaches the maximum value; after methane adsorption, the adsorption hysteresis loop of low temperature liquid nitrogen decreases, and the adsorption amount of low temperature carbon dioxide also decreases, indicating that the pore structure of coal rock changes after methane adsorption; after methane adsorption, the pore volume and specific surface area of micropores, mesopores and macropores in coal rocks all decreased, especially the micropores and specific surface area decreased obviously, and the decrease of pore volume and specific surface area of different pore sizes has segmentation effect, which is mainly due to the decrease of pore volume and specific surface area of micropores with pore size less than 1 nm and mesopores with pore size less than 8 nm; the change of pore structure of high rank coal is related to the higher test pressure of methane adsorption.
-
-
[1] 刘珊珊,孟召平.等温吸附过程中不同煤体结构煤能量变化规律[J].煤炭学报,2015,40(6):1422-1427. LIU Shanshan, MENG Zhaoping. Study on energy variation of different coal-body structure in the process of isothermal adsorption[J]. Journal of China Coal Society, 2015, 40(6): 1422-1427.
[2] 王延斌,陶传奇,倪小明,等.基于吸附势理论的深部煤储层吸附气量研究[J].煤炭学报,2018,43(6):1547-1552. WANG Yanbin, TAO Chuanqi, NI Xiaoming, et al. Amount of adsorbed gas in deep coal reservoir based on adsorption potential theory[J]. Journal of China Coal Society, 2018, 43(6): 1547-1552.
[3] 李波波,杨康,许江,等.考虑温度作用下煤岩渗透特性及吸附膨胀的试验研究[J].煤炭学报,2018,43(6):1761-1768. LI Bobo, YANG Kang, XU Jiang, et al. Experimental study on permeability characteristics and adsorption swelling of coal considering temperature effect[J]. Journal of China Coal Society, 2018, 43(6): 1761-1768.
[4] 韩思杰,桑树勋,梁晶晶.沁水盆地南部中高阶煤高压甲烷吸附行为[J].煤田地质与勘探,2018,46(5):10. HAN Sijie, SANG Shuxun, LIANG Jingjing. High pressure methane adsorption of medium and high-rank coal in southern Qinshui Basin[J]. Coal Geology & Exploration, 2018, 46(5): 10.
[5] 王俏,王兆丰.不同破坏类型煤的吸附势差异性研究[J].煤矿安全,2018,49(12):13-16. WANG Qiao, WANG Zhaofeng. Study on adsorption potential difference of different destructive types of coal[J]. Safety in Coal Mines, 2018, 49(12): 13-16.
[6] 宋昱,姜波,李明,等.低中煤级构造煤超临界甲烷吸附特性及吸附模型适用性[J].煤炭学报,2017,42(8):2063-2073. SONG Yu, JIANG Bo, LI Ming, et al. Super critical CH4 adsorption characteristics and applicability of adsorption models for low, middle-rank tectonically deformed coals[J]. Journal of China Coal Society, 2017, 42(8): 2063-2073.
[7] CLARKSON C R, BUSTIN R M. The effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study: 1. isotherms and pore volume distributions[J]. Fuel, 1999, 78(11): 1333. [8] LIU S, MA J, SANG S, et al. The effects of supercritical CO2 on mesopore and macropore structure in bituminous and anthracite coal[J]. Fuel, 2018, 223: 32. [9] LUTYNSKI M, GONZALEZ M A G. Characteristics of carbon dioxide sorption in coal and gas shale - The effect of particle size[J]. Journal of Natural Gas Science and Engineering, 2016, 28: 558-565. [10] CHEN Y, QIN Y, WEI C, et al. Porosity changes in progressively pulverized anthracite subsamples: implications for the study of closed pore distribution in coals[J]. Fuel, 2018, 225: 612-622. [11] 刘盛东,梁运培,魏进涛,等.煤的等温吸附曲线对比研究[J].煤矿安全,2016,47(10):13-16. LIU Shengdong, LIANG Yunpei, WEI Jintao, et al. Comparative study on isothermal adsorption curve of coal[J]. Safety in Coal Mines, 2016, 47(10): 13-16.
[12] 梁运培,刘盛东,魏进涛,等.吸附势理论中饱和蒸汽压参数k探讨[J].煤矿安全,2016,47(12):145. LIANG Yunpei, LIU Shengdong, WEI Jintao, et al. Study on saturated vapor pressure parameter k of adsorption potential theory[J]. Safety in Coal Mines, 2016, 47(12): 145.
[13] 周动,冯增朝,赵东,等.煤表面非均匀势阱吸附甲烷特性数值模拟[J].煤炭学报,2016,41(8):1968. ZHOU Dong, FENG Zengchao, ZHAO Dong, et al. Numerical simulation on the methane adsorption characteristics of coal with non-uniform potential well[J]. Journal of China Coal Society, 2016, 41(8): 1968.
[14] LI T, WU C. Research on the abnormal isothermal adsorption of shale[J]. Energy & Fuels, 2015, 29(2): 634. -
期刊类型引用(4)
1. 乔美英,史有强. 基于指标信息融合的冲击地压危险等级预测. 煤矿安全. 2025(02): 118-125 . 本站查看
2. 田勇峰,曹东京,许宏阳,魏明华,田利华,薛建军,薛建秋. 切眼外错下孤岛工作面开采冲击危险性分析及防治措施. 煤矿安全. 2024(03): 139-146 . 本站查看
3. 王飞,马文涛,亢晓涛,焦伟,尚楠,马江鹏,马宏源. 厚硬顶板地面水力致裂防治冲击地压技术研究. 煤炭工程. 2024(08): 59-64 . 百度学术
4. 毕慧杰,莫云龙,李少刚. 复合厚硬顶板深孔爆破与快速装药工艺实践. 煤矿安全. 2024(12): 31-38 . 本站查看
其他类型引用(1)
计量
- 文章访问数: 33
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 5