• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

深部双煤柱巷道冲击地压发生机制

张振金, 杜涛涛

张振金, 杜涛涛. 深部双煤柱巷道冲击地压发生机制[J]. 煤矿安全, 2021, 52(4): 25-30.
引用本文: 张振金, 杜涛涛. 深部双煤柱巷道冲击地压发生机制[J]. 煤矿安全, 2021, 52(4): 25-30.
ZHANG Zhenjin, DU Taotao. Mechanism of rock burst in deep double pillar roadway[J]. Safety in Coal Mines, 2021, 52(4): 25-30.
Citation: ZHANG Zhenjin, DU Taotao. Mechanism of rock burst in deep double pillar roadway[J]. Safety in Coal Mines, 2021, 52(4): 25-30.

深部双煤柱巷道冲击地压发生机制

Mechanism of rock burst in deep double pillar roadway

  • 摘要: 针对红庆河煤矿深部双煤柱工作面临空巷道冲击地压显现强烈、破坏范围大、影响因素复杂的特征,采用地表观测、煤体应力监测、微震监测的方法,分析了影响静载荷的埋深、双宽煤柱留设和采动影响,以及影响动载的厚层顶板岩层结构和垮冒不充分的相邻采空区,研究了冲击地压发生的静载荷、动载荷演化过程,揭示了深部双煤柱巷道冲击地压发生机制。研究表明:深部双煤柱引起3-1103新辅运静载荷的组成包括基础载荷、采动应力及煤柱的侧向应力,叠加后的静载荷达到垂直应力的1.4~4.5倍,静载荷达到24.9~80.1 MPa,接近或超过煤体发生冲击地压的临界载荷;煤柱上方岩层结构向煤柱深部破坏失稳,释放弯曲下沉过程积聚的弹性能,引起煤柱的煤体应力升高,煤岩体的应力向深部转移,破坏位置距离3-1103工作面越来越近,从而诱发具有高应力集中的煤岩体失稳。
    Abstract: According to the characteristics of deep double coal pillar working face in Hongqinghe Coal Mine, such as strong rock burst, large damage range and complex influencing factors, the methods of surface observation, coal stress monitoring and micro-seismic monitoring were used to analyze the buried depth, double width coal pillar reservation and mining influence that affect static load, as well as the structure of thick roof strata that affects dynamic load and the adjacent goaf with insufficient caving. In this paper, the evolution process of static load and dynamic load of rock burst was studied, and the mechanism of rock burst was revealed. The research showed that the new auxiliary static load of 3-1103 caused by deep double coal pillar consists of foundation load, mining stress and lateral stress of coal pillars. The superimposed static load reached 1.4-4.5 times of the vertical stress, and the static load reaches 24.9-80.1 MPa, which is close to or exceeds the critical load of rock burst of coal seam. The rock structure above the coal pillars was damaged to the depth of the coal pillars, releasing the bending and sinking process. The accumulated elastic energy caused the stress of the coal pillar to rise, and the stress of the coal and rock mass transferred to the deep part. The failure position was closer and closer to the 3-1103 working face, thus inducing the instability of the coal and rock mass with high stress concentration.
  • [1] 窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学出版社,2001.
    [2] 潘俊锋,宁宇,毛德兵,等.煤矿开采冲击地压启动理论[J].岩石力学与工程学报,2012,31(3):586-596.

    PAN Junfeng, NING Yu, MAO Debing, et al. Theory of rockburst start-up during coal mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 586-596.

    [3] 潘俊锋,毛德兵.冲击地压启动理论与成套技术[M].徐州:中国矿业大学出版社,2016:73-88.
    [4] 姜耀东,潘一山,姜福兴,等.我国煤炭开采中的冲击地压机理和防治[J].煤炭学报,2014,39(2):205.

    JIANG Yaodong, PAN Yishan, JIANG Fuxing, et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society, 2014, 39(2): 205.

    [5] 窦林名,何江,曹安业,等.煤矿冲击矿压动静载叠加原理及其防治[J].煤炭学报,2015,40(7):1469.

    DOU Linming, He Jiang, CAO Anye, et al. Rock burst prevention methods based on theory of dynamic and static combined load induced in coal mine[J]. Journal of China Coal Society, 2015, 40(7): 1469.

    [6] 曹安业,范军,牟宗龙,等.矿震动载对围岩的冲击破坏效应[J].煤炭学报,2010,35(12):2006-2010.

    CAO Anye, FAN Jun, MU Zonglong, et al. Burst failure effect of mining-induced tremor on roadway surrounding rock[J]. Journal of China Coal Society, 2010, 35(12): 2006-2010.

    [7] 潘一山.煤矿冲击地压扰动响应失稳理论及应用[J].煤炭学报,2018,43(8):2091-2098.

    PAN Yishan. Disturbance response instability theory of rockburst in coal mine[J]. Journal of China Coal Society, 2018, 43(8): 2091-2098.

    [8] 齐庆新,李宏艳,潘俊锋,等.冲击矿压防治的应力控制理论与实践[J].煤矿开采,2011,16(3):114-118.

    QI Qingxin, LI Hongyan, PAN Junfeng, et al. Stress control theory and practical of rock-burst prevention[J]. Coal Mining Technology, 2011, 16(3): 114-118.

    [9] 杜涛涛,李康,蓝航,等.近直立特厚煤层冲击地压致灾过程分析[J].采矿与安全工程学报,2018,35(1):140-145.

    DU Taotao, LI Kang, LAN Hang, et al. Rockburst process analysis in steeply-inclined extremely-thick coal seam[J]. Journal of Mining & Safety Engineering, 2018, 35(1): 140-145.

    [10] 金珠鹏,秦涛,张俊文.深部大采高工作面支承压力分布特征及影响因素分析[J].煤炭科学技术,2018, 46(S1):96-99.

    JIN Zhupeng, QIN Tao, ZHANG Junwen. Analysis of abutment pressure distribution characteristics and influencingfactors of deep mining height face[J]. Coal Science and Technology, 2018, 46(S1): 96-99.

    [11] 常云博,郑立永,王国龙.深部大采高工作面煤柱留设优化数值模拟研究[J].能源与环保,2020,42(2):128-133.

    CHANG Yunbo, ZHENG Liyong, WANG Guolong. Study on numerical simulation of pillar layout optimization in deep working facewith large mining height[J]. China Energy and Environment Protection, 2020, 42(2): 128-133.

  • 期刊类型引用(13)

    1. 马其,马骥,韦纯福,袁瑞甫,高岩. 双煤柱工作面开采覆岩运动及地表沉降规律研究. 矿业研究与开发. 2024(03): 73-81 . 百度学术
    2. 顾士坦,李旭智,王国良,刘志尧,马腾,陈森军. 变区段煤柱工作面诱冲机理及防治技术研究. 煤炭技术. 2024(05): 175-179 . 百度学术
    3. 杨光宇,陈学慧,周宏伟. 深部综采工作面多关键层-煤柱系统失稳诱冲机理研究. 煤炭工程. 2024(05): 121-128 . 百度学术
    4. 王旭东,乔文俊,王鹏,董俊亮,赵海. 深部近距离煤层类孤岛面布置方式及卸压技术研究. 煤炭工程. 2024(11): 7-12 . 百度学术
    5. 赵平平,张立明. 宽煤柱非连续卸压诱发冲击地压机制研究. 煤炭工程. 2024(12): 103-107 . 百度学术
    6. 秦子晗,高健勋,郑相春. 沿空缺陷型宽煤柱承载特征及诱冲机理研究. 采矿与岩层控制工程学报. 2023(02): 27-35 . 百度学术
    7. 何岗,贺虎,杨增强. 临近井田弱地震对矿井冲击危险性影响分析研究. 煤炭工程. 2023(08): 114-118 . 百度学术
    8. 张传玖,杜涛涛,任建慧,李宣良. 多级围压变应力下限循环加卸载煤体冲击倾向性特征研究. 煤矿安全. 2023(10): 107-116 . 本站查看
    9. 李果,张传玖,杨永亮. 冲击倾向性对煤体动态断裂行为的影响研究. 煤矿安全. 2023(12): 88-96 . 本站查看
    10. 曹远威,徐大连,李兵,刘汉磊,沈礼明. 顶板深孔爆破囊袋式灌浆无机封孔材料试验研究. 煤炭科技. 2022(01): 53-59 . 百度学术
    11. 赵亚明,杨伟,陈洋. 冲击地压矿井易自燃厚煤层回撤工作面自燃防治技术. 煤矿安全. 2022(04): 81-86+93 . 本站查看
    12. 康馨月. 鄂尔多斯矿区冲击地压特征分析. 科技风. 2022(21): 62-64 . 百度学术
    13. 曹路. 采煤工作面过背斜构造带回采巷道冲击地压防治技术. 煤. 2021(09): 71-73 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  30
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 15
出版历程
  • 发布日期:  2021-04-19

目录

    /

    返回文章
    返回