深部煤层顶板砂岩的人工制岩模拟研究
Simulation study on artificial rock formation of deep coal seam roof sandstone
-
摘要: 为了研究人工砂岩与深部煤层顶板砂岩的力学性质及微细观结构的异同,对不同材料配比的人工砂岩与平煤十二矿深部顶板砂岩进行声波波速测量、单轴压缩、覆压渗透、CT扫描、高压压汞等试验,得到其力学与孔隙结构性质。试验结果表明:人工砂岩弹性模量与石英砂占比及粒径大小正相关,人工砂岩的骨料及孔隙结构分布均匀,孔隙度和渗透率均与所含黏土质量分数负相关;顶板砂岩的弹性模量介于大粒与粗粒人工砂岩之间,岩体密度分布离散性较明显,渗透率及孔隙半径分布比人工砂岩小1~2个数量级;人工砂岩能够在力学性质上较好地模拟深部顶板砂岩,而在孔隙结构上与深部顶板砂岩具有较大差异。Abstract: In order to study the similarities and differences of mechanical and internal fine view of the structure between artificial sandstone and deep coal seam roof sandstone, artificial sandstone of different material proportions and deep roof sandstone in No. 12 Coal Mine of Pingmei Company were measured by a series of tests, including acoustic wave velocity test, uniaxial compression test, CT scanning, and high-pressure mercury injection test. The experimental results show that the greater the particle size and the higher the mass ratio of the quartz sand, the greater the elastic modulus of the artificial sandstone. For the artificial sandstone, aggregate and pore structure are uniform distribution, both the porosity and permeability are negatively correlated with the mass fraction of clay. The elastic modulus of roof sandstone is between large-grained and coarse-grained artificial sandstone, and the density distribution of rock mass is more discrete. The permeability and pore radius distribution are 1 to 2 orders of magnitude smaller than that of artificial sandstone. Comparison results show that artificial sandstone can better simulate on mechanical properties of deep roof sandstone, and on the pore structure artificial sandstone and deep roof sandstone has bigger difference.
-
Keywords:
- proportioning test /
- deep roof sandstone /
- elastic modulus /
- porosity /
- CT scanning /
- artificial sandstone
-
-
[1] 曹树刚,李勇,郭平,等.型煤与原煤全应力-应变过程渗流特性对比研究[J].岩石力学与工程学报,2010, 29(5):899-906. CAO Shugang, LI Yong, GUO Ping, et al. Comparative research on permeability characteristics in complete stress-strain process of briquettes and coal samples[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 899-906.
[2] 许江,叶桂兵,李波波,等.不同黏结剂配比条件下型煤力学及渗透特性试验研究[J].岩土力学,2015,36(1):104-110. XU Jiang, YE Guibing, LI Bobo, et al. Experimental study of mechanical and permeability characteristics of moulded coals with different binder ratios[J]. Rock and Soil Mechanics, 2015, 36(1): 104-110.
[3] 谢和平,高峰,鞠杨,等.深部开采的定量界定与分析[J].煤炭学报,2015,40(1):1-10. XIE Heping, GAO Feng, JU Yang, et al. Quantitative definition and investigation of deep mining[J]. Journal of China Coal Society,2015,40(1) :1-10.
[4] 谢和平,周宏伟,薛东杰,等.煤炭深部开采与极限开采深度的研究与思考[J].煤炭学报,2012,37(4):535-542. XIE Heping, ZHOU Hongwei, XUE Dongjie, et al. Research and consideration on deep coal mining and critical mining depth[J]. Journal of China Coal Society, 2012,37(4):535-542.
[5] ZHOU H W, ZHANG Y H, LI A M, et al. Experimental study on moving boundaries of fluid flow in porous media[J]. Chinese Science Bulletin, 2008, 53(3): 2438-2445. [6] ZHOU H W, YUE Z Q, Tham L G, et al. The Shape of Moving Boundary of Fluid Flow in Sandstone: Video Microscopic Investigation and Stochastic Modeling Approach[J]. Transport in Porous Media, 2003, 50(3): 343. [7] 周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91-99. ZHOU Hongwei, XIE Heping, ZUO Jianping. Developments in researches on mechanical behaviors of rocks under the condition of high ground pressure in the depths[J]. Advances in Mechanics, 2005, 35(1): 91-99.
[8] 周宏伟,谢和平,左建平,等.赋存深度对岩石力学参数影响的实验研究[J].科学通报,2010,55(34):3276-3284. ZHOU Hongwei, XIE Heping, ZUO Jianping, et al. Experimental study of the effect of depth on mechanical parameters of rock[J]. Chinese Science Bulletin, 2010, 55(34): 3276-3284.
[9] 单仁亮,黄博,宋永威,等.新峪矿采空区下近距离巷道矿压特征研究[J].矿业科学学报,2016,1(1):29. SHAN Renliang, HUANG Bo, SONG Yongwei, et al. Ground pressure features of roadway under close range goaf in the Xinyu Mine[J]. Journal of Mining Science and Technology, 2016, 1(1): 29.
[10] 张国锋,苗沛沛,王二雨,等.浅埋沿空留巷切缝顶板断裂条件及移动规律研究[J].矿业科学学报,2017, 2(2):109-119. ZHANG Guofeng, MIAO Peipei, WANG Eryu, et al. Research on roof fracture criterion and moving rule of gob-side entry in shallow seam[J]. Journal of Mining Science and Technology, 2017, 2(2): 109-119.
[11] 于波.鄂尔多斯盆地上古生界致密砂岩储层微观孔隙特征[J].西安科技大学学报,2018,38(1):150. YU Bo. Micro-characteristics of upper Paleozoic tight reservoir of Ordos Basin[J]. Journal of Xi’an University of Science and Technology, 2018, 38(1): 150.
[12] 黄兴文,陈全红,李海滨.卡塔尔上古生界低渗透砂岩储层特征及物性控制因素[J].西安科技大学学报,2015,35(3):336-343. HUANG Xingwen, CHEN Quanhong, LI Haibin. Characteristics and controlling factors on physical properties of upper-paleozoic low-permeability sandstones in Qatar[J]. Journal of Xi’an University of Science and Technology, 2015, 35(3): 336-343.
[13] 邱正松,张世锋,黄维安,等.泥页岩稳定性评价中人工模拟岩样的制备[J].油田化学,2012,29(1):1-5. QIU Zhengsong, ZHANG Shifeng, HUANG Weian, et al. Artificial shale sample preparation method in shale stability index(SSI) evaluation test[J]. Oilfield Chemistry, 2012, 29(1): 1-5.
[14] 唐仁骐,曾玉华,姚风英.HNT人造岩样的制作和研究[J].石油钻采工艺,1998,20(1):98-102. TANG Renqi, ZENG Yuhua, YAO Fengying. The manufacture and study of HNT artificial rock sample[J]. Oil Drilling & Production Technology, 1998, 20(1): 98-102.
[15] 谢和平,高峰,鞠杨.深部岩体力学研究与探索[J].岩石力学与工程学报,2015,34(11):2161-2178. XIE Heping, GAO Feng, JU Yang. Reserch and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161-2178.
[16] 鞠杨,谢和平,郑泽民,等.基于3D打印技术的岩体复杂结构与应力场的可视化方法[J].科学通报,2014,59(32):3109-3119. JU Yang, XIE Heping, ZHENG Zemin, et al. Visualization of the complex structure and stress field inside rock by means of 3D printing technology[J]. Chinese Seience Bulletin, 2014, 59(32): 3109-3119.
[17] 邹航,刘建锋,边宇,等.不同粒度砂岩力学和渗透特性实验研究[J].岩土工程学报,2015,37(8):1462. ZOU Hang, LIU Jianfeng, BIAN Yu, et al. Experimental study on mechanical and permeability properties of sandstone with different granularities[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1462.
[18] 于淼.CO2驱油后的流体-岩石相互作用研究-以松辽盆地南部为例[D].吉林:吉林大学,2015. [19] 王宇,李晓,阙介民,等.基于CT图像灰度水平的孔隙率计算及应用[J].水利学报,2015,46(3):357. WANG Yu, LI Xiao, QUE Jiemin, et al. A porosity calculation method based on CT images and its application[J]. Journal of Hydraulic Engineering, 2015, 46(3): 357.
[20] 武志德.考虑渗流及时间效应的层状盐岩溶腔稳定分析[D].北京:中国矿业大学(北京),2011. [21] 林志红,项伟,张云明.湘西红砂岩基本物理指标和微结构参数对其强度影响的试验研究[J].岩石力学与工程学报,2010,29(1):124-133. LIN Zhihong, XIANG Wei, ZHANG Yunming. Experimental research on influences of physical indices and microstructure parameters on strength properties of red stone from western Hunan[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(1): 124-133.
[22] 杨虎,王建民.延长气田山西组致密砂岩储层及微观孔喉特征研究[J].西安科技大学学报,2015,35(6):755-762. YANG Hu, WANG Jianmin. Reservoir characteristics and sandstone microstructures of Shanxi formation in the Yanchang gas areas[J]. Journal of Xi’an University of Science and Technology, 2015, 35(6): 755-762.
[23] LI Y, TANG D, Elsworth D, et al. Characterization of coalbed methane reservoirs at multiple length scales: a cross-section from southeastern Ordos Basin, China[J]. Energy & Fuels, 2014, 28(9): 5587-5595. [24] Hodot B B. Outburst of coal and coalbed gas[M]. China Coal Industry Press, Beijing, 1966. [25] ZHAO J, XU H, TANG D, et al. Coal seam porosity and fracture heterogeneity of macrolithotypes in the Hancheng Block, eastern margin, Ordos Basin, China[J]. International Journal of Coal Geology, 2016, 159: 18-29. -
期刊类型引用(1)
1. 赵奎,王金鉴,曾鹏,杨道学,梁楠,龚囱. 人工砂岩材料力学特性及声发射特性试验研究. 矿业研究与开发. 2023(01): 141-146 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 24
- HTML全文浏览量: 0
- PDF下载量: 1
- 被引次数: 1