巷道断面突变对突出冲击波传播的影响
Influence of roadway cross-section mutation on the propagation of outburst shock wave
-
摘要: 为了研究巷道断面突变对突出冲击波传播的影响和冲击波超压冲量的破坏作用,利用自行搭建的煤与瓦斯突出冲击波传播实验系统,结合三维变截面巷道冲击波传播数值模型的建立,基于实验室实验和数值模拟的方法,研究了不同初始瓦斯压力下突出冲击波在断面突变巷道中的传播规律。结果表明:突出后巷道内压力变化可划分为冲击扰动初始阶段和压力衰减阶段,其中冲击扰动初始阶段冲击波超压峰值大于压力衰减阶段压力峰值,且前者超压冲量小于后者;以初始压力为0.6 MPa为例,计算得出压力衰减阶段超压冲量比冲击扰动初始阶段高52.4%,总冲量随冲击波传播呈先衰减后增大的规律;突出发生后,冲击波超压先随距离发生衰减,当冲击波从断面突变前的大直径巷道传入后方小直径巷道,因壁面反射形成局部高压区,超压强度在截面前0.65 m处增大,出现先衰减后增大的变化规律。Abstract: In order to study the influence of roadway cross-section mutation on the shock wave propagation and the destruction of shock wave overpressure impulse, based on the experiment and numerical simulation, by using self-built experimental system for the propagation of coal and gas outburst shock wave and combining with the establishment of three-dimensional numerical model of shock wave propagation in varied-section roadway, the propagation law of outburst shock wave under different initial gas pressures was studied. The results showed that the pressure change in the roadway after outburst is divided into two stages of the initial stage of shock disturbance and the pressure attenuation stage, the results indicated that the peak value of the overpressure in the initial stage of shock disturbance is greater than the pressure attenuation stage. However, the overpressure impulse of the former is less than that of the latter, taking the initial pressure of 0.6 MPa as an example, the calculation results showed that the overpressure impulse of the pressure attenuation section is 52.4% higher than the initial stage of shock disturbance. Moreover, with the propagation of shock wave in the roadway, the total shock wave impulse appears to decay first and then increase. After outburst, the shock wave overpressure attenuates with distance first; in the process of the shock wave being introduced into the small diameter roadway from the large diameter roadway, a local high pressure area was formed due to wall reflection, which makes the overpressure strength rise at 0.65 m in front of the cross-section, showing a change rule of attenuation first and then increase.
-
-
[1] 袁亮.煤矿典型动力灾害风险判识及监控预警技术研究进展[J].煤炭学报,2020,45(5):1557-1566. YUAN Liang. Research progress on risk identification, assessment, monitoring and early warning technologies of typical dynamic hazards in coal mines[J]. Journal of China Coal Industry, 2020, 45(5): 1557-1566.
[2] DU Feng, WANG Kai, GUO Yangyang, et al. The mechanism of rockburst-outburst coupling disaster considering the coal-rock combination: an experiment study[J]. Geomechanics and Engineering, 2020, 22(3): 255-264. [3] 程亮,许江,周斌,等.不同瓦斯压力对煤与瓦斯突出两相流传播规律的影响研究[J].岩土力学,2020,41(8):1-8. CHENG Liang, XU Jiang, ZHOU Bin, et al. The influence of different gas pressures on the propagation law of coal and gas outburst two-phase flow[J]. Rock and Soil Mechanics, 2020, 41(8): 1-8.
[4] 萨文科C K.井下空气冲击波[M].北京:冶金工业出版社,1979. [5] 蔺照东,李如江,陈兴,等.水平管道截面积突然扩大对冲击波传播的影响[J].煤矿安全,2014,45(5):141-147. LIN Zhaodong, LI Rujiang, CHEN Xing, et al. The effect of suddenly extended cross-sectional area of horizontal pipe on the explosion shock wave propagation[J]. Safety in Coal Mines, 2014, 45(5): 141-147.
[6] 王凯,周爱桃,魏高举,等.巷道截面变化对突出冲击波传播的影响[J].煤炭学报,2012,37(6):989-993. WANG Kai, ZHOU Aitao, WEI Gaoju, et al. Effects of changes in roadway section on outburst shock wave propagation[J]. Journal of Coal Industry, 2012, 37(6): 989-993.
[7] 王凯,王亮,杜锋,等.煤粉粒径对突出瓦斯-煤粉动力特征的影响[J].煤炭学报,2019,44(5):1369-1377. WANG Kai, WANG Liang, DU Feng, et al. Effect of coal particle size on outstanding gas-pulverized coal dynamic characteristics[J]. Journal of China Coal Society, 2019, 44(5): 1369-1377.
[8] ZHOU Bin, XU Jiang, PENG Shoujian, et al. Experimental analysis of the dynamic effects of coal-gas outburst and a protean contraction and expansion flow model[J]. Natural Resources Research, 2020, 29(3): 1617-1637. [9] AN Fenghua, CHENG Yuanping, WANG Liang, et al. A numerical model for outburst including the effect of adsorbed gas on coal deformation and mechanical properties[J]. Computers and Geotechnics, 2013, 54: 222. [10] NIE Baisheng, MA Yankun, HU Shoutao, et al. Laboratory study phenomenon of coal and gas outburst based on a mid-scale simulation system[J]. Scientific Reports, 2019, 9(1): 1-12. [11] ZHOU Aitao, ZHANG Meng, WANG Kai, et al. Airflow disturbance induced by coal mine outburst shock waves: a case study of a gas outburst disaster in China[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 128: 1-11. [12] XUE Sheng, ZHENG Chunshan, ZHENG Xiaoliang, et al. Experimental determination of the outburst threshold value of energy strength in coal mines for mining safety[J]. Process Safety and Environment Protection, 2020, 138: 263-268. [13] 綦耀光,刘冰,张芬娜,等.煤层气井负压射流快速排煤粉装置研究[J].中国矿业大学学报,2014,43(1):72-78. QI Yaoguang, LIU Bing, ZHANG Fenna, et al. Study of coal particles vacuuming cleanout jet pump in coalbed methane wells[J]. Journal of China University of Mining & Technology, 2014, 43(1): 72-78.
[14] WANG Kai, ZHOU Aitao, ZHANG Jianfang, et al. Real-time numerical simulations and experimental research for the propagation characteristics of shock waves and gas flow during coal and gas outburst[J]. Safety Science, 2012, 50(4): 835-841. [15] 王磊,司荣军,苗磊,等.障碍物压力反射特性对瓦斯爆炸传播影响的数值模拟研究[J].中国安全生产科学技术,2020,16(8):106-112. WANG Lei, SI Rongjun, MIAO Lei, et al. Numerical simulation research on influence of obstacle pressure reflection characteristics on gas explosion propagation[J]. Journal of Safety Science and Technology, 2020, 16(8): 106-112.
[16] 昝文涛,洪滔,董贺飞.带管道连接的空间中悬浮铝粉尘爆轰波传播数值模拟[J].含能材料,2017,25(6):106-112. ZAN Wentao, HONG Tao, DONG Hefei. Numerical simulation of detonation wave propagation of suspended aluminum dust in space with pipe connection[J].Journal of Energetic Materials, 2017, 25(6): 106-112.
[17] 杨前意,石必明,张雷林,等.拐弯角度对瓦斯爆炸诱导煤尘爆炸的影响研究[J].中国安全科学学报,2019,29(7):58-63. YANG Qianyi, SHI Biming, ZHANG Leilin, et al. Study on the influence of turning angle on gas explosion-induced coal dust explosion[J]. Chinese Journal of Safety Science, 2019, 29(7): 58-63.
[18] Li QM, Meng H. Pulse loading shape effects on pressure-impulse diagram of an elastic-plastic, single-degree-of-freedom structural model[J]. International Journal of Mechanical Science, 2002, 44(9): 1985-1998. [19] 田诗雅,刘剑,高科.密闭管道瓦斯爆炸冲击波冲量及压力上升速率的实验研究[J].中国安全生产科学技术,2015(8):16-21. TIAN Shiya, LIU Jian, GAO Ke. Experimental study on impulse impulse and pressure rise rate of gas explosion in closed pipelines[J]. China Safety Science and Technology, 2015(8): 16-21.
[20] 李重情,穆朝民,许登科,等.空腔长度对瓦斯爆炸冲击波传播影响研究[J].采矿与安全工程学报,2018, 35(6):1293-1300. LI Zhongqing, MU Chaomin, XU Dengke, et al. Influence of cavity length on shock wave propagation of gas explosion[J]. Journal of Mining and Safety, 2018, 35(6): 1293-1300.
[21] 王新颖,王树山,卢熹,等.空中爆炸冲击波对生物目标的超压-冲量准则[J].爆炸与冲击,2018,36(1):106-111. WANG Xinying, WANG Shushan, LU Xi, et al. Overpressure-impulse damage criterion of air shock waves on biological targets[J]. Explosion and Shock Waves, 2018, 36(1): 106-111.
[22] RUDAKOV D, SOBOLEV V. A mathematical model of gas flow during coal outburst initiation[J]. International Journal of Mining and Technology, 2019, 29(5): 791-796. -
期刊类型引用(5)
1. 关建军,李军伟. 煤与瓦斯突出两相流成形传播特性及对反向风门破坏分析. 山西化工. 2025(01): 204-207 . 百度学术
2. 余雯君,陈胜云,邓树新,纪玉国,唐胜世. 爆炸冲击波在变截面通道中传播规律数值研究. 兵器装备工程学报. 2024(02): 166-173+203 . 百度学术
3. 任美容,谢雄刚,骆家宁,陈学习. 弹性装置缓冲下矿井突出冲击波能量衰减规律研究. 中国安全生产科学技术. 2024(10): 81-87 . 百度学术
4. 纪玉国,张国凯,李干,邓树新,徐天涵,姚箭,李杰,王明洋,何勇. 单向式、穿廊式坑道中温压炸药爆炸冲击波消波性能及机理. 兵工学报. 2023(S1): 26-40 . 百度学术
5. 代芳瑞,李希建,胡贝. 不同突出口径下冲击波穿越反向风门孔洞传播规律试验研究. 矿业研究与开发. 2022(08): 159-164 . 百度学术
其他类型引用(8)
计量
- 文章访问数: 35
- HTML全文浏览量: 0
- PDF下载量: 2
- 被引次数: 13