全应力-应变条件下煤岩渗透率变化机制实验研究

    薛俊华, 李延河, 李洪彪, 袁占栋, 詹可亮

    薛俊华, 李延河, 李洪彪, 袁占栋, 詹可亮. 全应力-应变条件下煤岩渗透率变化机制实验研究[J]. 煤矿安全, 2021, 52(2): 33-37.
    引用本文: 薛俊华, 李延河, 李洪彪, 袁占栋, 詹可亮. 全应力-应变条件下煤岩渗透率变化机制实验研究[J]. 煤矿安全, 2021, 52(2): 33-37.
    XUE Junhua, LI Yanhe, LI Hongbiao, YUAN Zhandong, ZHAN Keliang. Experimental study on change mechanism of coal and rock permeability under total stress and strain condition[J]. Safety in Coal Mines, 2021, 52(2): 33-37.
    Citation: XUE Junhua, LI Yanhe, LI Hongbiao, YUAN Zhandong, ZHAN Keliang. Experimental study on change mechanism of coal and rock permeability under total stress and strain condition[J]. Safety in Coal Mines, 2021, 52(2): 33-37.

    全应力-应变条件下煤岩渗透率变化机制实验研究

    Experimental study on change mechanism of coal and rock permeability under total stress and strain condition

    • 摘要: 针对煤岩在采动荷载作用下渗透率演化规律展开研究,选取河南平顶山矿区煤岩,基于Darcy定律稳态测量法,利用三轴压缩渗透实验装置进行煤岩全应力-应变渗透性实验。实验结果表明:控制渗透气体压力相同,围压的增加,阻止了试件拉伸裂隙的发育,导致煤岩全应力-应变曲线的应力峰值升高、渗透率降低;控制围压相同,煤岩应变-渗透率曲线与应力-应变曲线变化趋势基本相同,且存在因果关系,导致煤岩应变-渗透率曲线较应力-应变曲线具有滞后性。
      Abstract: In order to study the permeability evolution law of coal and rock under the action of mining dynamic load, the Darcy law steady-state measurement method was adopted to conduct the stress-strain permeability experiment of coal and rock using the triaxial compression permeability experiment device. The experimental results show that the increase of confining pressure prevents the development of tensile crack, resulting in the increase of stress peak and permeability decrease of the total stress-strain curve of coal and rock. With the same confining pressure, the variation trend of the coal rock strain-permeability curve and the stress-strain curve is basically the same, and there is a causal relationship, resulting in the hysteresis of the coal rock strain-permeability curve compared with the stress-strain curve.
    • [1] 谢和平,高峰,鞠杨.深部岩体力学研究与探索[J].岩石力学与工程学报,2015,34(11):2161-2178.

      XIE Heping, GAO Feng, JU Yang. Research and exploration of deep rock mass mechanics[J]. Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161-2178.

      [2] 张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001(1):40-44.

      ZHANG Hui. Genetic types and research of coal pores[J]. Journal of China Coal Society, 2001(1): 40-44.

      [3] 袁亮.煤矿典型动力灾害风险判识及监控预警技术研究进展[J].煤炭学报,2020,45(5):1557-1566.

      YUAN Liang. Research progress on risk identification, assessment, monitoring andearly warning technologies of typical dynamic in coal mines[J]. Journal of China Coal Society, 2020, 45(5): 1557-1566.

      [4] 李波波,高政,杨康,等.温度与孔隙压力耦合作用下煤岩吸附-渗透率模型研究[J].岩石力学与工程学报,2020,39(4):668-681.

      LI Bobo, GAO Zheng, YANG Kang, et al.Study on the adsorption-permeability model under the coupling oftemperature and pore pressure[J]. Journal of Rock Mechanics and Engineering, 2020, 39(4): 668-681.

      [5] 李波波,李建华,杨康,等.孔隙压力与水分综合作用的煤岩渗透率演化规律[J].中国矿业大学学报,2020,49(1):44-53.

      LI Bobo, LI Jianhua, YANG Kang, et al. Evolution law of coal permeability based on comprehensive effect of pore pressure and water[J]. Journal of China University of Mining and Technology, 2020, 49(1): 44-53.

      [6] 东振,申瑞臣,薛华庆,等.考虑滑脱效应的低阶煤动态渗透率预测新模型[J].岩土力学,2019,40(11):4270-4278.

      DONG Zhen, SHEN Ruichen, XUE Huaqing, et al. A new model for predicting low-rank coal dynamic permeability considering slippage effect[J]. Rock and Soil Mechanics, 2019, 40(11): 4270-4278.

      [7] 潘一山,罗浩,李忠华,等.含瓦斯煤岩围压卸荷瓦斯渗流及电荷感应试验研究[J].岩石力学与工程学报,2015,34(4):713-719.

      PAN Yishan, LUO Hao, LI Zhonghua, et al. Experimental study on gas permeability and charge induction of gaseous coal rock under confining perssure unloading[J]. Journal of Rock Mechanics and Engineering, 2015, 34(4): 713-719.

      [8] 马天然,刘卫群,JONNY Rutqvist,等.裂隙煤岩各向异性渗透率模型和煤层注气THM耦合行为[J].煤炭学报,2017,42(S2):407-416.

      MA Tianran, LIU Weiqun, JONNY Rutqvist, et al. Anisotropy permeability model for highly fractured coal seama associated with coupled the analysis of CO2-ECBM[J]. Journal of China Coal Science, 2017, 42(S2): 407-416.

      [9] Lama R D, Bodziony J. Management of outburst in underground coal mines[J]. International Journal of Coal Geology, 1998, 35(1): 83-115.
      [10] Beamish B B, Crosdale P J. Instantaneous outbursts in underground coal mines: an overview and association with coal type[J]. International Journal of Coal Geology, 1998, 35(1): 27-55.
      [11] Chen P, Wang E, Ou J, et al. Fractal characteristics of surface crack evolution in the process of gas containing coal extrusion[J]. International Journal of Mining Science and Technology, 2013(23): 121-126.
      [12] 程远平.煤矿瓦斯防治理论与工程应用[M].徐州: 中国矿业大学出版社, 2010.
      [13] 俞启香,程远平.矿井瓦斯防治[M].徐州:中国矿业大学出版社, 2012.
      [14] Shepherd J, Rixon L K, Griffiths L. Outbursts and geological structures in coal mines:a review[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18: 267-283.
      [15] Gray I. Outburst risk determination and associated factors[M]. Brisbane:Australian coal research Ltd, 2015.
      [16] 郭君.低透气性松软煤层高压水力割缝增透机理研究及应用[D].北京:北京科技大学,2019.
    计量
    • 文章访问数:  39
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 发布日期:  2021-02-19

    目录

      /

      返回文章
      返回