颗粒煤负压解吸扩散特征参数研究
Study on Characteristic Parameters of Particulate Coal Gas Desorption and Diffusion Under Negative Pressure Environment
-
摘要: 为了研究颗粒煤负压解吸扩散特征参数,采用自制颗粒煤瓦斯负压解吸实验系统,模拟负压取样过程初期负压阶段瓦斯解吸扩散规律,研究颗粒煤不同吸附平衡压力(0.5、0.74、1 MPa)在不同负压(-40、-50、-60 kPa)下解吸扩散规律,并基于第三类边界条件经典扩散模型分析了颗粒煤瓦斯负压解吸扩散特征参数。研究结果表明:负压环境下颗粒煤瓦斯极限瓦斯解吸量随着环境负压值的增大而增加,随着吸附平衡压力的升高极限瓦斯解吸量的增幅变小;同一吸附平衡压力下,随着负压值的增大,传质毕欧准数和传质傅立叶准数随之增大,负压值越大颗粒煤外部对流传质阻力越小,扩散场扰动波及的深度越深入煤粒内部;同一吸附平衡压力下扩散系数随着负压值的增大而增大,同一负压值下随着吸附平衡压力的增大而减小,负压值增大改变了瓦斯解吸动力学参数,加快了瓦斯解吸扩散。Abstract: In order to study the characteristic parameters of particulate coal gas desorption and diffusion within a negative pressure environment, a self-made particulate coal gas desorption experimental system was used to simulate the law of gas desorption and diffusion in the initial negative pressure stage of the negative pressure sampling process, and to study the particulate coal at different adsorption equilibrium pressures (0.5 MPa, 0.74 MPa and 1 MPa) and different negative pressures (-40 kPa, -50 kPa and -60 kPa) gas desorption and diffusion laws, and based on the classical diffusion model of the third kind of boundary conditions, the characteristic parameters of gas desorption and diffusion are analyzed. The research result shows that the ultimate gas desorption capacity of particulate coal increases with the increase of the negative pressure value of the environment, and the ultimate gas desorption capacity increases with the increase of the adsorption equilibrium pressure and rate of increase becomes smaller; under the same adsorption equilibrium pressure, with the increase of the negative pressure value, the mass transfer Biotherm and the mass transfer Fourier increase accordingly. The larger the negative pressure value, the smaller the external convective mass transfer resistance of particulate coal, the depth of the disturbance of the diffusion field goes deeper into the coal particles; the diffusion coefficient increases with the increase of the negative pressure value under the same adsorption equilibrium pressure, and decreases with the increase of the adsorption equilibrium pressure under the same negative pressure value, and the
-
-
[1] 李圣林,卜军.基于煤田测井复合参数的煤层瓦斯含量超前预测探讨[J].煤矿安全,2018,49(6):143. [2] 张宏图,魏建平,王云刚,等.煤层瓦斯含量测定定点取样方法研究进展[J].中国安全生产科学技术,2016,12(1):186-192. [3] YUAN W, PAN Z, LI X, et al. Experimental study and modelling of methane adsorption and diffusion in shale[J]. Fuel, 2014,117: 509-519. [4] WANG G, REN T, QI Q, et al. Determining the diffusion coefficient of gas diffusion in coal: Development of numerical solution[J]. Fuel, 2017, 196: 47-58. [5] 杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986(3):87-94. [6] 张登峰,崔永君,李松庚,等.甲烷及二氧化碳在不同煤阶煤内部的吸附扩散行为[J].煤炭学报,2011,36(10):1693-1698. [7] 聂百胜,郭勇义,吴世跃,等.煤粒瓦斯扩散的理论模型及其解析解[J].中国矿业大学学报,2001,30(1):21-24. [8] 李志强,刘勇,许彦鹏,等.煤粒多尺度孔隙中瓦斯扩散机理及动扩散系数新模型[J].煤炭学报,2016,41(3):633-643. [9] 史广山,魏风清,高志扬.相似准数法煤粒瓦斯扩散系数计算[J].中国安全科学学报,2015,25(9):127. [10] 张路路,魏建平,温志辉,等.基于动态扩散系数的煤粒瓦斯扩散模型[J].中国矿业大学学报,2020,49(1):62-68. [11] 王公达.煤粒瓦斯扩散的数值解法[J].煤矿安全,2017,48(7):177-180. [12] 杨鑫,张俊英,王公达,等.瓦斯压力对瓦斯在煤中扩散影响的实验研究[J].中国矿业大学学报,2019,48(3):503-510. [13] 王春霞,艾德春,杨付领.水分对受载原煤瓦斯解吸影响的实验研究[J].煤矿安全,2017,48(10):24. [14] 严敏,龙航,白杨,等.温度效应对煤层瓦斯吸附解吸特性影响的实验研究[J].矿业安全与环保,2019,46(3):6-10. [15] 刘彦伟,李通,薛文涛.软硬煤瓦斯扩散系数动态变化规律的差异性[J].煤矿安全,2017,48(9):17-20. [16] 张宪尚.扩散时间对经典模型扩散系数影响研究[J].中国安全科学学报,2020,30(2):60-65. [17] 韩恩光,刘志伟,冉永进,等.不同粒度煤的瓦斯解吸扩散规律实验研究[J].中国安全生产科学技术,2019,15(12):83-87. [18] 李建功.不同煤屑形状对瓦斯解吸扩散规律影响的数学模拟[J].煤矿安全,2015,46(1):1-4. [19] 王志军,李先铭,马小童,等.微波间断加载对柱状煤瓦斯解吸特性的影响[J].微波学报,2019,35(1):91-96. [20] 简星,关平,张巍.煤中CO2的吸附和扩散:实验与建模[J].中国科学:地球科学,2012,42(4):492. [21] 陈向军,段正鹏,刘洋,等.负压环境下含瓦斯煤扩散特性试验研究[J].煤炭科学技术,2016,44(6):106. [22] DU Y, CHEN X, LI L, et al. Characteristics of methane desorption and diffusion in coal within a negative pressure environment[J]. Fuel, 2018,217: 111-121. [23] DONG J, CHENG Y, JIN K, et al. Effects of diffusion and suction negative pressure on coalbed methane extraction and a new measure to increase the methane utilization rate[J]. Fuel, 2017, 197: 70-81.
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量: 0