基于掘进机截割电机电流的岩石硬度识别
Rock Hardness Identification Based on Cutting Motor Current of Roadheader
-
摘要: 针对岩巷掘进机在掘进过程中,截割载荷难以直接监测,导致截割转速和摆速无法及时调整以适应岩石硬度变化的问题,研究了基于截割电机电流信号识别截割岩石硬度;通过分析截割动载荷与电机电流信号之间的传输特性,构建截割电机电流与截割岩石接触强度系数之间的函数模型,识别截割岩石硬度;以EBZ160TY型重型掘进机地面试验数据进行验证,平均识别精度为90.5%。结果表明:利用截割电机电流信号能够有效的识别截割岩石的硬度,为掘进机实现自动控制提供可靠依据。Abstract: It is difficult to monitor the cutting load directly during the driving process of roadheader for rock tunnel, which leads to the problem that the cutting speed and swing speed cannot be adjusted in time to adapt to the rock hardness change. In this paper, the rock hardness identification based on cutting motor current signal is studied. By analyzing the transmission characteristics between the cutting dynamic load and the cutting motor current signal, the function model between the cutting motor current and the cutting rock contact strength coefficient is established to identify the cutting rock hardness. Based on the ground test data of EBZ160TY heavy roadheader, the average recognition accuracy is 90.5%. The results show that the cutting motor current signal can effectively identify the cutting rock hardness and provide the reliable basis for automatic control of roadheader.
-
Keywords:
- roadheader /
- cutting dynamic load /
- cutting motor current /
- rock hardness /
- function model
-
-
[1] 袁晓明,邹易达,躞雪梅,等.部分断面掘进机截割头截割性能研究[J].机械工程学报,2017,53(24):193. [2] 何洋,李晓豁.纵轴式掘进机截割头随机截割载荷识别方法研究[J].武汉科技大学学报,2017,40(2):138-143. [3] Ergin Kahraman, Sair Kahraman. The performance prediction of roadheaders from easy testing methods[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(4): 1585-1596. [4] 李晓豁.掘进机截割头随机载荷的模拟研究[J].煤炭学报,2000,25(5):39-41. [5] 李晓豁,刘兴刚.纵横轴式掘进机截割头载荷的模拟分析[J].辽宁工程技术大学学报(自然科学版),2018, 27(10):745-747. [6] 张兰胜,赵元宇,田劫,等.实际工况下的掘进机截割头载荷谱研究[J].煤炭工程,2016,48(1):133-135. [7] 张兰胜,赵元宇,吴淼基于井下实验数据的EBZ-160型掘进机截割头载荷研究[J].煤炭技术,2016,35(10):245-248. [8] 王想.截割头截割不同硬度岩石分层面过程载荷仿真[J].煤炭工程,2015,47(3):106-108. [9] 李臻,贾洪钢,范旭峰.基于振动加速度信号与应力信号的掘进机载荷识别方法[J].工矿自动化,2013,39(2):6-9. [10] Salsani A , Daneshian J , Shahram Shariati. Predicting roadheader performance by using artificial neural network[J]. neural computing & applications, 2014, 24(7-8): 1823-1831. [11] M Dolipski, P Cheluszka, P Sobota. Investigating the simulated control of the rotational speed of roadheader cutting heads, relating to the reduction of energy consumption during the cutting process[J]. Journal of Mining Science, 2015, 51(2): 298-308. [12] Avunduk E, Tumac D, Atalay A K. Prediction of roadheader performance by artificial neural network[J]. Tunnelling & Underground Space Technology, 2014, 44: 3-9. [13] Seker S E , Ocak I . Performance prediction of roadheaders using ensemble machine learning techniques[J]. Neural Computing and Applications, 2019, 31(4): 1103-1116. [14] Lijuan Zhao, Jianyong Wang, Xu Zhu. Cutting performance evaluation of a roadheader machine by PCA and RBF[J]. Transactions of the Society for Modeling and Simulation International, 2018, 94(3):003754971775399. -
期刊类型引用(7)
1. 张虎. 巷道掘进横穿小断层构造带顶板支护优化研究. 煤炭与化工. 2024(02): 33-38 . 百度学术
2. 罗波远,高瑞,樊荣,宁掌玄,郑嘉璐. 红庆梁矿12301胶运巷耦合支护研究. 煤. 2024(04): 24-28 . 百度学术
3. 李军,成升升,王飞,马洪波,糜瑞杰,刘玉德. 沿空留巷围岩稳定性综合评判与控制技术研究. 能源与环保. 2024(04): 254-259+266 . 百度学术
4. 袁鹏,刘振坡. 多因素影响下巷道稳定性控制及支护技术研究. 煤矿现代化. 2024(05): 73-77+83 . 百度学术
5. 高乐,郭晓胜,刘勋,王伟,赵盛男. 大断面托顶煤巷道高强度支护结构设计与应用. 煤炭工程. 2024(12): 38-45 . 百度学术
6. 崔发发. 榆树坡矿托顶煤巷道高效快速掘进支护技术研究. 煤. 2023(04): 43-45+108 . 百度学术
7. 范东林,王巍. 大采高工作面回风巷道支护参数优化研究. 中国安全科学学报. 2022(S2): 166-171 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 47
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 11