特厚煤层地面L型水平井分段压裂技术应用研究

    门 鸿,赵华全,窦桂东,贾增林,高永刚,严 斌,谢 非,武 亮

    门 鸿,赵华全,窦桂东,贾增林,高永刚,严 斌,谢 非,武 亮. 特厚煤层地面L型水平井分段压裂技术应用研究[J]. 煤矿安全, 2023, 54(7): 50-58.
    引用本文: 门 鸿,赵华全,窦桂东,贾增林,高永刚,严 斌,谢 非,武 亮. 特厚煤层地面L型水平井分段压裂技术应用研究[J]. 煤矿安全, 2023, 54(7): 50-58.
    MEN Hong. Research on the application of stage fracturing technology of L-shaped horizontal well in extra-thick coal seam[J]. Safety in Coal Mines, 2023, 54(7): 50-58.
    Citation: MEN Hong. Research on the application of stage fracturing technology of L-shaped horizontal well in extra-thick coal seam[J]. Safety in Coal Mines, 2023, 54(7): 50-58.

    特厚煤层地面L型水平井分段压裂技术应用研究

    Research on the application of stage fracturing technology of L-shaped horizontal well in extra-thick coal seam

    • 摘要: 特厚煤层开采过程中,煤层上方坚硬顶板强度高、破断步距大、难垮落,特别是开采扰动范围广,大面积坚硬顶板岩层破断失稳,造成采场冲击动力显现更加强烈;井下大孔径卸压、煤层爆破卸压以及井下长钻孔水力压裂技术仅限于局部卸压和小范围顶板弱化,不能有效对煤层上方高位大面积坚硬岩层进行弱化改性。提出了地面L型水平井分段压裂技术,通过对岩层破断方向进行理论分析并综合岩层特性给出了压裂关键层位范围,结合井上下微震一体化联合监测技术,形成了地面水平井分段压裂控制技术体系,并进行了地面压裂工程实践。井下微震-地音联合监测表明:压裂期间微震监测总能量达到16.93×104 J,地音监测总能量达到1.36×108 J,压裂过程可对井下围岩的宏观破裂具有明显的诱发作用;地面压裂裂缝扩展范围广,2口压裂井裂缝扩展长度分别达到790、851 m,裂缝宽度最大达到380~390 m,裂缝高程达到375~450、390~410 m,裂缝扩展均可覆盖工作面及两巷道,并穿透目标层位。井下采场矿压监测表明:工作面周期来压期间,支架阻力降低32%,煤壁片帮率降低34%,工作面超前支护范围无底鼓、帮部收敛等现象,微震监测总频次及总能量均降低达到90%以上。因此,地面水平井分段压裂可有效减小采场上覆岩层的强矿压,进而降低工作面回采期间的冲击地压灾害。
      Abstract: In the process of extra-thick coal seam mining, the strength of hard roof above the coal seam is high, the breaking step distance is large, and it is difficult to collapse, especially the mining disturbance range is wide, and the rock strata of large area of hard roof is broken and unstable, which causes the impact force of the stope to appear more intense. The research shows that the hydraulic fracturing technology of downhole large aperture pressure relief, coal seam blasting pressure relief and downhole long drilling is limited to local pressure relief and weakening of small roof , it is not effective to weaken and modify the high large area of hard rock above the coal seam; we propose the staged fracturing technology of L-shaped horizontal wells on the surface based on the theoretical analysis of the fracture direction of the rock layer and the comprehensive characteristics of the rock layer, the range of key fracturing horizons is given. Combined with the integrated micro-seismic monitoring technology up and down the well, the control technology system of horizontal horizontal wells under the stage fracturing is formed, and the ground fracturing engineering practice is carried out. The joint monitoring analysis of underground micro-seismic and ground sound shows that: the total energy of micro-seismic monitoring during fracturing reaches 16.93×104 J and the total energy of ground sound monitoring reaches 1.36×108 J. The fracturing process can induce the macroscopic fracture of underground surrounding rock obviously; the surface fracturing has a wide fracture propagation range. The fracture propagation length of the two fracturing wells reaches 790 m and 851 m respectively, the maximum fracture width reaches 380-390 m, and the fracture elevation reaches 375-450 m and 390-410 m. The fracture propagation can cover the working face and two grooving, and penetrate the target horizon. The mine pressure monitoring in underground stope shows that during the periodic pressure period of working face, the support resistance is reduced by 32%, the coal wall slab rate is reduced by 34%, and there is no floor heave and wall convergence in the advanced support range of working face. The total frequency and energy of micro-seismic monitoring decreased by more than 90%. Therefore, segmented fracturing of horizontal wells can effectively reduce the strong rock pressure in the overlying strata of the stope, and then reduce the rock burst disaster during the working face mining.
    • [1] 谢和平,周宏伟,刘建锋,等.不同开采条件下采动力学行为研究[J].煤炭学报,2011,36(7):1067-1074. XIE Heping, ZHOU Hongwei, LIU Jianfeng, et al. Mining-induced mechanical behavior in coal seams under different mining layouts[J]. Journal of China Coal Society, 2011, 36(7): 1067-1074. [2] 潘俊锋,康红普,闫耀东,等.顶板“人造解放层”防治冲击地压方法、机理及应用[J].煤炭学报,2023,48(2):636-648. PAN Junfeng, KANG Hongpu, YAN Yaodong, et al. The method, mechanism and application of preventing rock burst by artificial liberation layer of roof[J]. Journal of China Coal Society, 2023, 48(2): 636-648. [3] 潘俊锋,马文涛,刘少虹,等.坚硬顶板水射流预制缝槽定向预裂防冲技术试验[J].岩石力学与工程学报,2021,40(8):1591-1602. PAN Junfeng, MA Wentao, LIU Shaohong, et al. A prevention technology of rock burst based on directional presplitting of water jet prefabricated slot in hard roof[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(8): 1591-1602. [4] 冯彦军,康红普.定向水力压裂控制煤矿坚硬难垮顶板试验[J].岩石力学与工程学报,2012,31(6):1148-1155. FENG Yanjun, KANG Hongpu. Test on hard and stable roof control by means of directional hydraulic fracturing in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1148-1155. [5] 张自政,柏建彪,陈勇,等.浅孔爆破机制及其在厚层坚硬顶板沿空留巷中的应用[J].岩石力学与工程学报,2016,35(S1):3008-3017. ZHANG Zizheng, BAI Jianbiao, CHEN Yong, et al. Shallow-hole blasting mechanism and its application for gob-side entry retaining with thick and hard roof[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 3008-3017. [6] 杨敬轩.安全高效能坚硬煤岩承压式爆破控制机理及试验分析[D].徐州:中国矿业大学,2015. [7] 李化敏,蒋东杰,李东印.特厚煤层大采高综放工作面矿压及顶板破断特征[J].煤炭学报,2014,39(10):1956-1960. LI Huamin, JIANG Dongjie, LI Dongyin. Analysis of ground pressure and roof movement in fully-mechanized top coal caving with large mining height in ultra-thick seam[J]. Journal of China Coal Society, 2014, 39(10): 1956-1960. [8] 夏永学,潘俊锋,谢非,等.特厚煤层大巷复合构造区重复冲击致灾机制及控制技术[J].岩石力学与工程学报,2022,41(11):2199-2209. XIA Yongxue, PAN Junfeng, XIE fei, et al. Disaster mechanism and control technology of large roadway group with repeated impact in extra-thick coal seam[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(11): 2199-2209. [9] 曹明.近浅埋煤层长壁工作面顶板来压机理研究[D].西安:西安科技大学,2010. [10] 张润兵.杨柳煤矿上覆双层厚硬火成岩破断运移规律研究[D].徐州:中国矿业大学,2014. [11] 曹胜根,姜海军,王福海,等.采场上覆坚硬岩层破断的数值模拟研究[J].采矿与安全工程学报,2013,30(2):205-210. CAO Shenggen, JIANG Haijun, WANG Fuhai, et al. Numerical simulation of overlying hard strata rupture in a coal face[J]. Journal of Mining & Safety Engineering, 2013, 30(2): 205-210. [12] 宋永津.大同煤矿采场坚硬顶板控制方法与工程效果[J].煤炭科学技术,1991,19(12):18-22. SONG Yongjin. Controlling methods and engineering effects of strong roof in Datong Mining Area[J]. Coal Science and Technology, 1991, 19(12): 18-22. [13] 蔡峰,张逸龙,徐辉,等.基于坚硬顶板应力弱化的回采巷道大变形控制技术[J].煤炭科学技术,2015,43(9):37-41. CAI Feng, ZHANG Yilong, XU hui, et al. Large deformation control technology of gateway based on stress weakened hard roof[J]. Coal Science and Technology, 2015, 43(9): 37-41. [14] 朱葛,董世民,潘子卜.水力压裂非稳定激励下储层内动应力仿真模型[J].煤炭学报,2021,46(S1):149-156. ZHU Ge, DONG Shimin, PAN Zibu. Simulation model of dynamic stress in reservoir under unsteady excitation of hydraulic fracturing[J]. Journal of China Coal Society, 2021, 46(S1): 149-156. [15] 张玉,王鹏胜,李大勇,等.考虑水力耦合的射孔围岩水力压裂破裂数值模拟方法[J].岩土工程学报,2022,44(3):409-419. ZHANG Yu, WANG Pengsheng, LI Dayong, et al. Numerical simulation method for hydraulic fracture pressure of perforated surrounding rock under hydraulic coupling[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 409-419. [16] 高富强.工作面坚硬顶板水力压裂对采动应力影响的数值模拟研究[J].采矿与岩层控制工程学报,2021,3(2):1-9. GAO Fuqiang. Influence of hydraulic fracturing of strong roof on mining-induced stress-insight from numerical simulation[J]. Journal of Mining and Strata Control Engineering, 2021, 3(2): 1-9. [17] 陈冬冬,孙四清,张俭,等.井下定向长钻孔水力压裂煤层增透技术体系与工程实践[J].煤炭科学技术,2020,48(10):84-89. CHEN Dongdong, SUN Siqing, ZHANG Jian, et al. Technical system and engineering practice of coal seam permeability improvement through underground directional long borehole hydraulic fracturing[J]. Coal Science and Technology, 2020, 48(10): 84-89. [18] 杜书恒,师永民.低渗油气藏水力压裂理想水驱波及范围预测新方法[J].天然气地球科学,2015,26(10):1956-1962. DU Shuheng, SHI Yongmin. New forecasting method on ideal water flooding swept volume after hydraulic fracturing in low permeability oil & gas reservoir[J]. Natural Gas Geoscience, 2015, 26(10): 1956-1962. [19] 张小东,张硕,杨艳磊,等.基于分形理论的煤储层水力压裂裂缝数值模拟[J].天然气地球科学,2015,26(10):1992-1998. ZHANG Xiaodong, ZHANG Shuo, YANG Yanlei, et al. Numerical simulation of hydraulic fracturing fractures in coal reservoir based on fractal theory[J]. Natural Gas Geoscience, 2015, 26(10): 1992-1998. [20] 彭春耀.层状页岩水力压裂裂缝与岩体弱面的干扰机理研究[J].石油钻探技术,2014,42(4):32-36. PENG Chunyao. Mechanism of interaction between hydraulic fractures and weak plane in layered shale[J]. Petroleum Drilling Techniques, 2014, 42(4): 32-36. [21] 杨心超,朱海波,崔树果,等.P波初动震源机制解在水力压裂微地震监测中的应用[J].石油物探,2015, 54(1):43-50. YANG Xinchao, ZHU Haibo, CUI Shuguo, et al. Application of P-wave first-motion focal mechanism solutions in microseismic monitoring for hydraulic fracturing[J]. Geophysical Prospecting for Petroleum, 2015, 54(1): 43-50. [22] 于斌,高瑞,夏彬伟,等.大空间坚硬顶板地面压裂技术与应用[J].煤炭学报,2021,46(3):800-801. YU Bin, GAO Rui, XIA Binwei, et al. Ground fracturing technology and application of hard roof in large space[J]. Journal of China Coal Society, 2021,46(3): 800-801. [23] 高瑞.远场坚硬岩层破断失稳的矿压作用机理及地面压裂控制研究[D].徐州:中国矿业大学,2018.
    • 期刊类型引用(6)

      1. 王帅,张晓. 特厚煤层顶板关键层地面压裂技术应用与优化. 陕西煤炭. 2025(01): 128-132+164 . 百度学术
      2. 姚俊成,李龙龙,刘喆,王璐. 页岩油开发中水平井分段压裂技术研究. 石化技术. 2025(02): 401-403 . 百度学术
      3. 潘俊锋,刘少虹,马文涛,夏永学,王书文,冯美华. 陕西煤矿冲击地压发生规律与分类防治. 煤炭科学技术. 2024(01): 95-105 . 百度学术
      4. 邓辉. 强冲击特厚煤层地面压裂覆岩运动规律. 陕西煤炭. 2024(06): 5-10 . 百度学术
      5. 门鸿,赵华全,窦桂东,谢非. 基于地震波CT探测的冲击地压危险性评价与防治. 陕西煤炭. 2024(06): 82-86+91 . 百度学术
      6. 王飞,马文涛,亢晓涛,焦伟,尚楠,马江鹏,马宏源. 厚硬顶板地面水力致裂防治冲击地压技术研究. 煤炭工程. 2024(08): 59-64 . 百度学术

      其他类型引用(0)

    计量
    • 文章访问数:  31
    • HTML全文浏览量:  8
    • PDF下载量:  22
    • 被引次数: 6
    出版历程
    • 网络出版日期:  2023-08-30
    • 刊出日期:  2023-08-22

    目录

      /

      返回文章
      返回