采动影响下邻空定向钻孔整体水力压裂瓦斯抽采技术
Integral hydraulic fracturing gas drainage technology for directional drilling in gob-side entry under influence of mining
-
摘要: 针对采动影响下邻空定向钻孔所面临的顺煤层成孔难度大,常规措施无法实施水力压裂的难题,以黄陵二号煤矿2号煤层邻空水力压裂钻孔为研究对象,提出了“先入顶板后进煤层”钻孔布置思路,以及开孔点与见煤点距离的综合确定方法,得出开孔点与见煤点距离的最小值为71.6 m;并确定了配套的封隔器类型和孔内压裂工具组合。在209工作面回采影响区域开展了工程实践,成功实施3个“先入顶板后进煤层”钻孔的定向钻进和整体水力压裂施工:定向钻孔长度240~270 m,岩孔段开孔点与见煤点距离为105~117 m,单孔压裂段长度126~165 m,泵注压力15.2~19.0 MPa,压裂液用量248~315 m3。实测水力压裂影响半径达36~54 m,压裂钻孔平均瓦斯抽采体积分数与瓦斯抽采量较压裂前提升了4~16倍和3~8倍,压裂区域内瓦斯预抽钻孔百米瓦斯抽采量是未压裂区域的2 倍,且抽采体积分数大于60 %的钻孔数量是未压裂区域的5.1倍。Abstract: For the difficulties in the construction of the directional drilling along the coal seam adjacent to the goaf under the influence of mining, such as the difficulty in hole formation and the inability of conventional measures to implement hydraulic fracturing, this paper takes the hydraulic fracturing drilling in the goaf adjacent to the 2# coal seam of Huangling No.2 Coal Mine as the research object, and puts forward the drilling layout idea of “entering the roof before entering the coal seam”. The comprehensive determination method of main key parameters is obtained, and the minimum value of opening point to coal point (L value) is 71.6 m; the stepwise release packer and matching in-hole fracturing tool combination suitable for the integral hydraulic fracturing of directional drilling are determined. The engineering practice has been carried out in the affected area of mining in the 209 working face, and the directional drilling and overall hydraulic fracturing construction of three “first entering the roof and then entering the coal seam” boreholes have been successfully implemented. The directional drilling length is 240-270 m, the rock hole section (L value) is 105-117 m, the single-hole fracturing section length is 126-165 m, the pumping pressure is 15.2-19.0MPa, and the fracturing fluid consumption is 248-315 m3. The measured influence radius of hydraulic fracturing is 36-54 m. The average gas drainage concentration and volume of fracturing boreholes has increased by 4-16 times and 3-8 times compared with that before fracturing. The gas drainage volume of pre-pumping boreholes in the fracturing area is twice that of the unfractured site, and the number of boreholes with gas drainage concentration greater than 60% is 5.1 times that of the unfractured area.
-
-
[1] 袁亮.我国煤矿安全发展战略研究[J].中国煤炭,2021,47(6):1-6. YUAN Liang. Study on the development strategy of coal mine safety in China[J]. China Coal, 2021, 47(6): 1-6. [2] 刘忠全,陈殿赋,孙炳兴,等.高瓦斯矿井超大区域瓦斯治理技术[J].煤炭科学技术,2021,49(5):120-126. LIU Zhongquan, CHEN Dianfu, SUN Bingxing, et al. Gas controltechnology in super large area of high gassy mine[J]. Coal Science and Technology, 2021, 49(5): 120-126. [3] 田柯,任亚军,苏越,等.基于双巷掘进的沿空掘巷巷道布置系统[J].中国煤炭,2018,44(10):87-91. TIAN Ke, REN Yajun, SU Yue, et al. Roadway layoutsystem of gob-side entry driving based on double-lane[J]. China Coal, 2018, 44(10): 87-91. [4] 陈冬冬,王建利,贾秉义,等.碎软煤层顶板梳状长钻孔水力压裂区域瓦斯高效抽采模式[J].煤田地质与勘探,2022,50(8):29-36. CHEN Dongdong, WANG Jianli, JIA Bingyi, et al. High-efficiency regional gas drainage model after hydraulic fracturing of comb-shaped long boreholes in the roof of broken soft and low permeability coal seam[J]. Coal Geology & Exploration, 2022, 50(8): 29-36. [5] 陈冬冬,孙四清,张俭,等.井下定向长钻孔水力压裂煤层增透技术体系与工程实践[J].煤炭科学技术,2020,48(10):84-89. CHEN Dongdong, SUN Siqing, ZHANG Jian, et al. Technical system and engineering practice of coal seam permeability improvement through underground directional long borehole hydraulic fracturing[J]. Coal Science and Technology, 2020, 48(10): 84-89. [6] 董润平,张俭,闫志铭,等.煤矿井下煤层顶板分段加砂压裂增渗技术与应用[J].煤矿安全,2022,53(5):73-80. DONG Runping, ZHANG Jian, YAN Zhiming, et al. Technology and application of sublevel sand fracturing and permeability enhancement of coal seam roof in underground coal mine[J]. Safety in Coal Mines, 2022, 53(5): 73-80. [7] 杜天林,姜在炳,张俭,等.碎软煤层底板梳状孔分段压裂抽采瓦斯技术[J].煤矿安全,2021,52(1):107-113. DU Tianlin, JIANG Zaibing, ZHANG Jian, et al. Gas extraction technology of staged fracturing with comb hole in soft seam floor[J]. Safety in Coal Mines, 2021, 52(1): 107-113. [8] 潘俊锋,王书文,刘少虹,等.双巷布置工作面外围巷道冲击地压启动机理[J].采矿与安全工程学报,2018,35(2):291-298. PAN Junfeng, WANG Shuwen, LIU Shaohong, et al. Rock burst start-up mechanism of peripheral roadway in double entry layout workface[J]. Journal of Mining & Safety Engineering, 2018, 35(2): 291-298. [9] 孙四清,张群,闫志铭,等.碎软低渗高突煤层井下长钻孔整体水力压裂增透工程实践[J].煤炭学报,2017,42(9):2337-2344. SUN Siqing, ZHANG Qun, YAN Zhiming, et al. Practice of permeability enhancement through overall hydraulic fracturing of long hole in outburst-prone soft crushed coal seam with low permeability[J]. Journal of China Coal Society, 2017, 42(9): 2337-2344. [10] 郑玉斌,秦飞龙.水力致裂弱化坚硬顶板保护邻空巷道现场试验[J].煤矿安全,2019,50(5):64-66. ZHENG Yubin, QIN Feilong. Field test of hydraulic fracturing and weakening of hard roof to protect gob-side roadway[J]. Safety in Coal Mines, 2019, 50(5): 64-66. [11] 张学博,王文元,蔡行行.深部煤层抽采钻孔变形失稳影响因素研究[J].煤炭科学技术,2021,49(5):159-166. ZHANG Xuebo, WANG Wenyuan, CAI Hanghang. Study on influencing factors of deformation and instability of deep coal seam drainage borehole[J]. Coal Science and Technology, 2021, 49(5): 159-166. [12] 李志华,涂敏,姚向荣.深部瓦斯抽采钻孔稳定性与成孔控制数值分析[J].中国煤炭,2011,37(3):85 -89. LI Zhihua, TU Min, YAO Xiangrong. Numerical analysis of stabil ity and hole-forming controlof gas drainage borehole in deep mine[J]. China Coal, 2011, 37(3): 85-89. [13] 方俊.煤矿井下隐蔽致灾因素定向钻孔探查技术研究[D].西安:西安科技大学,2019. [14] 贾秉义,陈冬冬,吴杰,等.煤矿井下顶板梳状长钻孔分段压裂强化瓦斯抽采实践[J].煤田地质与勘探,2021,49(2):70-76. JIA Bingyi, CHEN Dongdong, WU Jie, et al. Practice of gas enhanced extraction by section fracturing with comb shaped long hole in coal mine roof[J]. Coal Geology & Exploration, 2021, 49(2): 70-76. [15] 叶俊良,秦兴林.定向水力压裂增透技术在矿井瓦斯治理中的应用[J].中国矿山工程,2021,50(3):33 -35. YE Junliang, QIN Xinglin. An application of directed hydraulic fracturing antireflection technology in underground mine gas control[J]. China Mine Engineering, 2021, 50(3): 33-35. [16] 王波,杨张杰,余大军,等.受上下错位工作面采动影响的瓦斯抽排巷变形时空规律模拟研究[J].能源与环保,2019,41(2):149-154. WANG Bo, YANG Zhangjie, YU Dajun, et al. Research on simulation and test of time and space law of gas drainage roadway deformation affected by the mining action of the upper and lower dislocation working faces[J]. China Energy and Environmental Protection, 2019, 41(2): 149-154.
-
期刊类型引用(3)
1. 曹艺钟. 离心式机械扩孔造穴装备在矿井瓦斯治理中的应用. 矿山机械. 2024(07): 11-15 . 百度学术
2. 齐森. 坚硬顶板定向水力压裂切顶致裂参数研究. 山西冶金. 2024(10): 131-132+136 . 百度学术
3. 李江涛,马文伟. 煤体多孔联动控制同步水力压裂技术及工程应用. 华北科技学院学报. 2023(05): 100-107 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 12
- HTML全文浏览量: 0
- PDF下载量: 6
- 被引次数: 3