• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

晋北黄土沟壑区综放开采覆岩破坏规律研究

张国玉,高 峰,张志巍,邢旭东,朱 涛,刘凯文,苏继敏,郑光辉

张国玉,高 峰,张志巍,邢旭东,朱 涛,刘凯文,苏继敏,郑光辉. 晋北黄土沟壑区综放开采覆岩破坏规律研究[J]. 煤矿安全, 2023, 54(8): 81-89.
引用本文: 张国玉,高 峰,张志巍,邢旭东,朱 涛,刘凯文,苏继敏,郑光辉. 晋北黄土沟壑区综放开采覆岩破坏规律研究[J]. 煤矿安全, 2023, 54(8): 81-89.
ZHANG Guoyu. Study on failure law of overlying rock in fully mechanized caving mining in loess gully area in northern Shanxi[J]. Safety in Coal Mines, 2023, 54(8): 81-89.
Citation: ZHANG Guoyu. Study on failure law of overlying rock in fully mechanized caving mining in loess gully area in northern Shanxi[J]. Safety in Coal Mines, 2023, 54(8): 81-89.

晋北黄土沟壑区综放开采覆岩破坏规律研究

Study on failure law of overlying rock in fully mechanized caving mining in loess gully area in northern Shanxi

  • 摘要: 针对晋北黄土沟壑区煤层埋深浅、厚土层、薄基岩以及综放开采强扰动的问题,综合数值计算与现场实测2种方法探究采动覆岩破坏特征。模拟结果得出:强开采扰动条件下,采动破坏性影响将逐深向浅次第传递,随着工作面回采距离增加,采动岩层位移变形具有累积效应,采动破坏性影响存在纵向快速发展—纵向停滞横向扩展—纵向快速突破的发展过程,裂采比约为19.7。现场实测得到:10108工作面采动破坏性影响已突破基岩与土层的临界面,采动裂缝上下贯通,采空区上覆岩层已不具备阻隔水性能,采动覆岩破坏特征以高角度纵向裂隙为主,采动覆岩破坏高度将不小于198.2 m,裂采比将不小于22。综合研究结果表明:厚煤层综放开采造成上覆岩层破坏程度更加剧烈,导水断裂带较为发育,塑性强的黏性红土虽对采动裂隙的纵向发育具有抑制效应,但在工作面回采后一定时期无法自然弥合而丧失阻隔浅部松散层水和地表水,实测裂采比较之数值模拟结果与经验公式分别相差10.5%和9.5%,水体下采煤应及时制定合理的防治水技术措施。
    Abstract: Aiming at the engineering background of shallow coal seam burial depth, thick soil layer, thin bedrock and strong disturbance of fully mechanized caving mining in the loess gully area of northern Shanxi Province, two methods of comprehensive numerical calculation and field measurement are used to explore the failure characteristics of overlying rock during mining. The simulation results show that: under the condition of strong mining disturbance, the destructive influence of mining will be transmitted from depth to shallow. With the increase of the mining distance of the working face, the displacement and deformation of the mining stratum has a cumulative effect, and the destructive effect of mining has a development process of vertical rapid development, vertical stagnation and horizontal expansion, vertical rapid breakthrough, and the ratio of the water-conducting fracture zone to the mining thickness is about 19.7; the field measurement shows that the destructive impact of mining on the 10108 working face has broken through the critical plane between the bedrock and the soil layer, the mining cracks are connected up and down, and the overlying rock layer in the goaf no longer has the ability to block water. The failure characteristics of mining overburden are mainly high-angle longitudinal fractures. The damage height of mining overburden will not be less than 198.2 m, and the ratio of the water-conducting fracture zone to the mining thickness will not be less than 22. The comprehensive research results show that: fully mechanized caving mining of thick coal seam results in more severe damage of overlying strata, and high angle of mining-induced overlying strata can lead to the development of water fractures. Although the viscous laterite with strong plastic has a restraining effect on the longitudinal development of mining-induced fractures, it cannot naturally bridge and lose the barrier of shallow unconsolidated strata and surface water in a certain period after mining at the working face. The ratio of the water-conducting fracture zone to the mining thickness is 10.5% and 9.5% different from the numerical simulation results and the empirical formula respectively. Therefore, reasonable water prevention and control measures should be formulated in time.
  • [1] 张玉军,张志巍.煤层采动覆岩破坏规律与控制技术研究进展[J].煤炭科学技术,2020,48(11):85-97. ZHANG Yujun, ZHANG Zhiwei. Research progress of mining overlying stratas failure law and control technology[J]. Coal Science and Technology, 2020, 48(11): 85-97. [2] 康永华,孔凡铭,孙凯.覆岩破坏规律的综合研究技术体系[J].煤炭科学技术,1997(11):40-43. [3] 樊振丽,刘治国.厚黏土层软弱覆岩采动破坏的泥盖效应[J].采矿与安全工程学报,2020,37(6):1196-1204. FAN Zhenli, LIU Zhiguo. Mud cover effect of mining-induced failure of soft overburden in thick clay strata[J]. Journal of Mining & Safety Engineering, 2020, 37(6): 1196-1204. [4] 郭文兵,赵高博,白二虎.煤矿高强度长壁开采覆岩破坏充分采动及其判据[J].煤炭学报,2020,45(11):3657-3666. GUO Wenbing, ZHAO Gaobo, BAI Erhu. Critical failure of overlying rock strata and its criteria induced by high-intensity long wall mining[J]. Journal of China Coal Society, 2020, 45(11): 3657-3666. [5] 康红普,徐刚,王彪谋,等.我国煤炭开采与岩层控制技术发展40a及展望[J].采矿与岩层控制工程学报,2019,1(2):7-39. KANG Hongpu, XU Gang, WANG Biaomou, et al. Forty years development and prospects of underground coal mining and strata control technologies in China[J]. Journal of Mining and Strata Control Engineering, 2019, 1(2): 7-39. [6] 陈亮,吴兵,许小凯,等.泥、砂岩交互地层综放开采覆岩破坏高度的确定[J].采矿与安全工程学报,2017, 34(3):431-436. CHEN Liang, WU Bing, XU Xiaokai, et al. Determination of overburden failure height in alternate strata of mudstone and sandstone with fully mechanized caving method[J]. Journal of Mining & Safety Engineering, 2017, 34(3): 431-436. [7] 杨胜利,赵斌,杨毅.急倾斜厚煤层水平分段综放覆岩破坏模式实验研究[J].煤炭工程,2017,49(10):7-11. YANG Shengli, ZHAO Bin, YANG Yi. Experimental study on failure mode of horizontal sublevel caving in steeply inclined thick coal seam[J]. Coal Engineering, 2017, 49(10): 7-11. [8] 刘英锋,王世东,王晓蕾.深埋特厚煤层综放开采覆岩导水裂缝带发育特征[J].煤炭学报,2014,39(10):1970-1976. LIU Yingfeng, WANG Shidong, WANG Xiaolei. Development characteristics of water flowing fractured zone of overburden deep buried extra thick coal seam and fully-mechanized caving mining[J]. Journal of China Coal Society, 2014, 39(10): 1970-1976. [9] 康永华,靳仁昌.水体下放顶煤开采研究现状及其发展趋势[J].煤矿开采,2003(1):15-18. KANG Yonghua, JIN Renchang. Actuality and developing trend of longwall top coal caving mining under water[J]. Coal Mining Technology, 2003(1): 15-18. [10] 康永华,黄福昌,席京德.综采重复开采的覆岩破坏律[J].煤炭科学技术,2001(1):22-24. KANG Yonghua, HUANG Fuchang, XI Jingde. Overburden failure law of fully mechanized and repeated mining[J]. Coal Science and Technology, 2001(1): 22-24. [11] 宣以琼.薄基岩浅埋煤层覆岩破坏移动演化规律研[J].岩土力学,2008,29(2):512-516. XUAN Yiqiong. Research on movement and evolution law of breaking of overlying strata in shallow coal seam with a thin bedrock[J]. Rock and Soil Mechanics, 2008, 29(2): 512-516. [12] 余学义,李星亮,王鹏.特厚煤层分层综放开采覆岩破坏规律数值模拟[J].煤炭工程,2012(9): 67-69. YU Xueyi, LI Xingliang, WANG Peng. Numerical simulation of overburden strata failure law in fully mechanized top coal caving mining in slices of ultra thick seam[J]. Coal Engineering, 2012(9): 67-69. [13] 张玉军,李凤明.高强度综放开采采动覆岩破坏高度及裂隙发育演化监测分析[J].岩石力学与工程学报,2011,30(S1):2994-3001. ZHANG Yujun, LI Fengming. Monitoring analysis of fissure development evolution and height of overburden failure of high tension fully-mechanized caving mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 2994-3001. [14] 戴华阳,刘继岩,廉旭刚,等.厚黄土层条件下综放开采覆岩破坏数值模拟研究[J].湖南科技大学学报(自然科学版),2010,25(3):1-4. DAI Huayang, LIU Jiyan, LIAN Xugang, et al. Numerical simulation study on overburden rock damage by fully mechanized caving under thick loess layer[J]. Journal of Hunan University of Science & Technology(Natural Science Edition), 2010, 25(3): 1-4. [15] 韩军,张宏伟,高照宇,等.巨厚煤层软弱覆岩分层综放开采覆岩破坏高度研究[J].采矿与安全工程学报, 2016,33(2):226-230. HAN Jun, ZHANG Hongwei, GAO Zhaoyu, et al. Failure height of weak overburden by layered fully-mechanized mining in extremely thick coal seam[J]. Journal of Mining & Safety Engineering, 2016, 33(2): 226-230. [16] 杜文刚,柴敬,张丁丁,等.采动覆岩导水裂隙发育光纤感测与表征模型试验研究[J].煤炭学报,2021,46(5):1565-1575. DU Wengang, CHAI Jing, ZHANG Dingding, et al. Optical fiber sensing and characterization of water flowing fracture development in mining overburden[J]. Journal of China Coal Society, 2021, 46(5): 1565-1575. [17] 赵高博,郭文兵,杨达明,等.综放开采覆岩破坏模型及导水裂隙带高度研究[J].中国安全科学学报, 2017,27(11):144-149. ZHAO Gaobo, GUO Wenbing, YANG Daming, et al. Study on overburden failure models and height of water flowing fractured zone in fully mechanized caving mining[J]. China Safety Science Journal, 2017, 27(11): 144-149. [18] 张礼,齐庆新,张勇,等.采动覆岩裂隙场三维形态特征及其渗透特性研究[J].采矿与安全工程学报,2021,38(4):695-705. ZHANG Li, QI Qingxin, ZHANG Yong, et al. Study on three-dimensional shape and permeability of mining-induced fractured field in overburden rock[J]. Journal of Mining & Safety Engineering, 2021, 38(4): 695-705. [19] 许家林,秦伟,轩大洋,等.采动覆岩卸荷膨胀累积效应[J].煤炭学报,2020,45(1):35-43. XU Jialin, QIN Wei, XUAN Dayang, et al. Accumulative effect of overburden strata expansion induced by stress relief[J]. Journal of China Coal Society, 2020, 45(1): 35-43. [20] 车晓阳,侯恩科,孙学阳,等.沟谷区浅埋煤层覆岩破坏特征及地面裂缝发育规律[J].西安科技大学学报,2021,41(1):104-111. CHE Xiaoyang, HOU Enke, SUN Xueyang, et al. Research on overburden breaking characteristics and ground crack formation mechanism of shallow coal seam under the gully[J]. Journal of Xi’an University of Science and Technology, 2021, 41(1): 104-111. [21] 张玉军.控水采煤技术原理、关键技术及在砂岩含水层下综放开采实践[J].煤炭学报,2020,45(10):3380-3388. ZHANG Yujun. Principle and key technologies of controlled water mining and practice of fully-mechanized mining under soft sandstone aquifer[J]. Journal of China Coal Society, 2020, 45(10): 3380-3388. [22] 范钢伟,张东升,陈铭威,等.采动覆岩裂隙体系统耗散结构特征与突变失稳阈值效应[J].采矿与安全工程学报,2019,36(6):1093-1101. FAN Gangwei, ZHANG Dongsheng, CHEN Mingwei, et al. Dissipative structure feature of mining fractured overburden system and threshold effect of catastrophic instability[J]. Journal of Mining & Safety Engineering, 2019, 36(6): 1093-1101. [23] 杨达明,郭文兵,谭毅,等.高强度开采覆岩岩性及其裂隙特征[J].煤炭学报,2019,44(3):786-795. YANG Daming, GUO Wenbing, TAN Yi, et al. Lithology and fissure characteristics of overburden in high-intensity mining[J]. Journal of China Coal Society, 2019, 44(3): 786-795. [24] 张宏伟,朱志洁,霍利杰,等.特厚煤层综放开采覆岩破坏高度[J].煤炭学报,2014,39(5):816-821. ZHANG Hongwei, ZHU Zhijie, HUO Lijie, et al. Overburden failure height of super high seam by fully mechanized caving method[J]. Journal of China Coal Society, 2014, 39(5): 816-821. [25] 张炜,孙毓言,张东升,等.新疆伊犁矿区采动覆岩活动规律氡气探测三维物理模拟试验研究[J].采矿与安全工程学报,2019,36(6):1102-1108. ZHANG Wei, SUN Yuyan, ZHANG Dongsheng, et al. Three-dimensional physical simulation test for activity laws of mining-induced overburden by radon detection in Yili mining area of Xinjiang[J]. Journal of Mining & Safety Engineering, 2019, 36(6): 1102-1108.
  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  17
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 1
出版历程
  • 网络出版日期:  2023-09-04
  • 刊出日期:  2023-09-04

目录

    /

    返回文章
    返回