Research progress and trend analysis of comprehensive prevention and control of coal spontaneous combustion throughout all stages
-
摘要:
为深刻了解煤自燃全阶段防控领域的现状及未来趋势,从“监测预警、防治技术、应急救援”3个方面梳理了各阶段研究进展,并提出未来研究方向:运用多元统计分析、物联网、机器学习和人工智能等尖端技术,提升煤自燃预测预报准确性,构建智能化、超前预警与态势研判机制,实现智能化预测预报与超前预警系统;通过多学科交叉研究手段,深刻理解自燃机理、创新防灭火材料、发展新型微生物技术,使得煤自燃防治技术呈现深度研究和多元创新的趋势;在高效、协同、智能的救援机制下,煤自燃应急救援正朝更智能、信息化的方向迈进,期望推动煤自燃防控智能先进发展水平。
Abstract:To gain a profound understanding of the current status and future trends in the comprehensive prevention and control of coal spontaneous combustion, this paper comprehensively reviews stages and research progress in the aspects of “monitoring and early warning, prevention technology, and emergency rescue”. The following future research aspects are proposed: utilizing advanced technologies such as comprehensive multivariate statistical analysis, the Internet of Things (IoT), machine learning, and artificial intelligence to enhance the accuracy of coal spontaneous combustion prediction and forecasting. This involves constructing an intelligent, proactive warning, and situational judgment mechanism to achieve intelligent prediction, forecasting, and proactive warning systems. Through the comprehensive application of interdisciplinary research methods, gaining in-depth insights into the spontaneous combustion mechanism, innovative fire-resistant materials, and the development of new microbial technologies, theses make the technology of spontaneous combustion prevention and control of coal present a trend of in-depth research and multiple innovation. Under the framework of an efficient, collaborative, and intelligent rescue mechanism, the emergency rescue for coal spontaneous combustion is advancing towards a more intelligent and information-oriented direction. The goal is to promote the intelligent advancement of the coal spontaneous combustion prevention and control level.
-
-
图 2 统计关联度的计算结果[24]
Figure 2. Calculation results of statistical relational degree
图 3 基于特征温度划分风险等级[28]
Figure 3. Division of risk levels based on the characteristic temperature
图 4 PSO-GRU预测模型架构[31]
Figure 4. PSO-GRU prediction model architecture
图 9 抑制剂的抑制机制示意图[64]
Figure 9. Inhibition mechanism diagrammatic sketch of the inhibitor
-
[1] 李增华,苗国栋. 煤自燃大分子量气态产物生成规律研究[J]. 中国矿业大学学报,2023,52(6):1119−1128. LI Zenghua, MIAO Guodong. Study of the emission law of higher-molecular-weight gases during coal spontaneous combustion[J]. Journal of China University of Mining & Technology, 2023, 52(6): 1119−1128.
[2] 肖旸,叶星星,刘昆华,等. 二次氧化煤自燃过程关键官能团的转变规律[J]. 煤炭学报,2021,46(S2):989−1000. XIAO Yang, YE Xingxing, LIU Kunhua, et al. Transformation law of key functional groups in the process of coal secondary oxidation[J]. Journal of China Coal Society, 2021, 46(S2): 989−1000.
[3] 王利新,姚志强,王晓欢,等. 特厚高放顶煤开采注氮煤自燃危险抑制特性研究[J]. 煤矿安全,2023,54(10):72−81. WANG Lixin, YAO Zhiqiang, WANG Xiaohuan, et al. Study on suppression characteristics of coal spontaneous combustion risk by nitrogen injection in extra-thick and high top coal caving[J]. Safety in Coal Mines, 2023, 54(10): 72−81.
[4] 丁徐琴,张雷林. 氧气体积分数对煤自燃特性影响的实验研究[J]. 煤矿安全,2023,54(7):156−162. DING Xuqin, ZHANG Leilin. Experimental study on effect of oxygen volume fraction on spontaneous combustion characteristics of coal[J]. Safety in Coal Mines, 2023, 54(7): 156−162.
[5] 周福宝,李金海. 煤矿火区启封后复燃预测的BP神经网络模型[J]. 采矿与安全工程学报,2010,27(4):494−498. ZHOU Fubao, LI Jinhai. Prediction model for reignition of fire zone after unsealing based on BP neural networks[J]. Journal of Mining & Safety Engineering, 2010, 27(4): 494−498.
[6] 秦波涛,仲晓星,王德明,等. 煤自燃过程特性及防治技术研究进展[J]. 煤炭科学技术,2021,49(1):66−99. QIN Botao, ZHONG Xiaoxing, WANG Deming, et al. Research progress of coal spontaneous combustion process characteristics and prevention technology[J]. Coal Science and Technology, 2021, 49(1): 66−99.
[7] 任万兴,郭庆,石晶泰,等. 基于标志气体统计学特征的煤自燃预警指标构建[J]. 煤炭学报,2021,46(6):1747−1758. REN Wanxing, GUO Qing, SHI Jingtai, et al. Construction of early warning indicators for coal spontaneous combustion based on statistical characteristics of index gases[J]. Journal of China Coal Society, 2021, 46(6): 1747−1758
[8] 赵建会,张辛亥. 矿用灌浆注胶防灭火材料流动性能的实验研究[J]. 煤炭学报,2015,40(2):383−388. ZHAO Jianhui, ZHANG Xinhai. Experimental study of mine grout injection plastic fire prevention materials flow properties[J]. Journal of China Coal Society, 2015, 40(2): 383−388.
[9] ZHU Hongqing, HU Lintao, QU Baolin, et al. Optimization of key parameters for continuous and precise nitrogen injection in goaf based on response surface methodology[J]. Environmental Science and Pollution Research, 2023, 30: 40189−40205. doi: 10.1007/s11356-022-25037-7
[10] 张玉涛,史学强,李亚清,等. 环保型煤自燃阻化剂的阻化特性及机理研究[J]. 中国矿业大学学报,2018,47(6):1224-1232. ZHANG Yutao, SHI Xueqiang, LI Yaqing, et al. Mechanism and inhibiting effects of environmental-friendly inhibitor on coal spontaneous combustion[J]. Journal of China University of Mining & Technology, 2018, 47(6): 1224-1232.
[11] 秦波涛,王德明,毕强,等. 三相泡沫防治采空区煤炭自燃研究[J]. 中国矿业大学学报,2006,35(2):162-166. QIN Botao, WANG Deming, BI Qiang, et al. Three-Phase foam for preventing spontaneous combustion of coal in goaf[J]. Journal of China University of Mining & Technology, 2006, 35(2): 162-166.
[12] 梁闫,陈昊,张永领,等. 基于G1-DEMATEL-测度量化的煤矿应急救援协同能力评价模型[J]. 煤矿安全,2022,53(11):254−258. LIANG Yan, CHEN Hao, ZHANG Yongling, et al. Evaluation model of coal mine emergency rescue collaborative ability based on G1-DEMATEL-measurement quantification[J]. Safety in Coal Mines, 2022, 53(11): 254−258.
[13] 胡青松,杨维,丁恩杰,等. 煤矿应急救援通信技术的现状与趋势[J]. 通信学报,2019,40(5):163−179. HU Qingsong, YANG Wei, DING Enjie, et al. State-of-the-art and trend of emergency rescue communication technologies for coal mine[J]. Journal on Communications, 2019, 40(5): 163−179.
[14] 王金凤,张璐瑶,冯立杰,等. 基于动态博弈的煤矿突发事故应急资源配置[J]. 煤矿安全,2016,47(1):234−237. WANG Jinfeng, ZHANG Luyao, FENG Lijie, et al. Coal mine accident emergency resource allocation based on dynamic game[J]. Safety in Coal Mines, 2016, 47(1): 234−237.
[15] ZHAO Haojiang, YANG Wei. An emergency rescue communication system and environmental monitoring subsystem for underground coal mine based on wireless mesh network[J]. International Journal of Distributed Sensor Networks, 2018, 14(10): 15501477188.
[16] 孔彪,朱思想,胡相明,等. 基于改进鲸鱼算法优化BP神经网络的煤自燃预测研究[J]. 矿业安全与环保,2023,50(5):30−36. KONG Biao, ZHU Sixiang, HU Xiangming, et al. Study on prediction of coal spontaneous combustion based on MSWOA-BP[J]. Mining Safety & Environmental Protection, 2023, 50(5): 30−36.
[17] 邓军,白祖锦,肖旸,等. 煤自燃指标体系试验研究[J]. 安全与环境学报,2018,18(5):1756−1761. DENG Jun, BAI Zujin, XIAO Yang, et al. Experimental investigation and examination for the indexical system of the coal spontaneous combustion[J]. Journal of Safety and Environment, 2018, 18(5): 1756−1761.
[18] LI Xuping, ZHANG Jing, REN Xiaopeng, et al. Study on condition analysis and temperature prediction of coal spontaneous combustion based on improved genetic algorithm[J]. Aip Advances, 2022, 12(11): 115128. doi: 10.1063/5.0127606
[19] GUO Jun, CHEN Changming, WEN Hu, et al. Prediction model of goaf coal temperature based on PSO-GRU deep neural network[J]. Case Studies in Thermal Engineering, 2024, 53: 103813. doi: 10.1016/j.csite.2023.103813
[20] 翟小伟,罗金雷,张羽琛,等. 基于数据填补的煤自燃温度预测模型[J]. 工矿自动化,2023,49(1):28−35. ZHAI Xiaowei, LUO Jinlei, ZHANG Yuchen, et al. Prediction model of coal spontaneous combustion temperature based on data filling[J]. Industry and Mine Automation, 2023, 49(1): 28−35.
[21] 梁运涛,王伟,王刚,等. 《煤矿防灭火细则》编制原则及要点解读[J]. 煤矿安全,2022,53(5):230−235. LIANG Yuntao, WANG Wei, WANG Gang, et al. Compilation principle and key points interpretation of Coal Mine Fire Prevention and Control Rules[J]. Safety in Coal Mines, 2022, 53(5): 230−235.
[22] 罗海珠,钱国胤. 各煤种自然发火标志气体指标研究[J]. 煤矿安全,1992,23(5):5−10. [23] 梁运涛. 煤炭自然发火预测预报的气体指标法[J]. 煤炭科学技术,2008,36(6):5−8. LIANG Yuntao. Gas index method to predict coal spontaneous combustion[J]. Coal Science and Technology, 2008, 36(6): 5−8.
[24] YAN Hongwei, NIE Baisheng, LIU Peijun, et al. Experimental assessment of multi-parameter index gas correlation and prediction system for coal spontaneous combustion[J]. Combustion and Flame, 2023, 247: 112485. doi: 10.1016/j.combustflame.2022.112485
[25] 叶正亮,龚选平,尚博,等. 煤自燃全过程精准预测预报指标体系研究与应用[J]. 矿业研究与开发,2023,43(9):141−145 YE Zhengliang, GONG Xuanping, SHANG Bo, et al. Research and application of accurate prediction index system for the whole process of coal spontaneous combustion[J]. Mining Research and Development, 2023, 43(9): 141−145.
[26] 王福生,韩慧兰,柳晓莉,等. 煤自然发火预测预报模型的构建[J]. 矿业安全与环保,2011,38(1):21−22 WANG Fusheng, HAN Huilan, LIU Xiaoli, et al. Construction of coal spontaneous combustion prediction model[J]. Mining Safety & Environmental Protection, 2011, 38(1): 21−22.
[27] WANG Kai, LI Yang, ZHAI Xiaowei, et al. A method for evaluating the coal spontaneous combustion index by the coefficient of variation and Kruskal–Wallis test: a case study[J]. Environmental Science and Pollution Research, 2023, 30(20): 58956−58966. doi: 10.1007/s11356-023-26718-7
[28] GUO Qing, REN Wanxing, LU Wei. Risk evaluation of coal spontaneous combustion from the statistical characteristics of index gases[J]. Thermochimica Acta:An International Journal Concerned with the Broader Aspects of Thermochemistry and Its Applications to Chemical Problems, 2022, 715: 179287.
[29] 李艳昌,张连超,陶华焕. 铁北煤矿褐煤自燃预测函数模型研究[J/OL]. 工业安全与环保,2024:1−6. [2024−03−07]. http://kns.cnki.net/kcms/detail/42.1640.X.20230831.1527.020.html. LI Yanchang, ZHANG Lianchao, TAO Huahuan. Study on prediction function model of lignite spontaneous combustion in Tiebei Coal Mine[J/OL]. Industrial Safety and Environmental Protection, 2024: 1−6. [2024−03−07]. http://kns.cnki.net/kcms/detail/42.1640.X.20230831.1527.020.html.
[30] LI Shuang, XU Kun, XUE Guangzhe, et al. Prediction of coal spontaneous combustion temperature based on improved grey wolf optimizer algorithm and support vector regression[J]. Fuel, 2022, 324: 124670. doi: 10.1016/j.fuel.2022.124670
[31] GUO Jun, CHEN Changming, WEN Hu, et al. Prediction model of goaf coal temperature based on PSO-GRU deep neural network[J]. Case Studies in Thermal Engineering, 2022, 53: 103813.
[32] GUO Qing, REN Wanxing, LU Wei. A method for predicting coal temperature using CO with GA-SVR model for early warning of the spontaneous combustion of coal[J]. Combustion Science and Technology, 2022, 194(3): 523−538. doi: 10.1080/00102202.2020.1772767
[33] 刘宝,穆坤,叶飞,等. 基于相关向量机的煤自燃预测方法[J]. 工矿自动化,2020,46(9):104−108. LIU Bao, MU Kun, YE Fei, et al. Prediction method of coal spontaneous combustion based on relevance vector machine[J]. Industry and Mine automation, 2020, 46(9): 104−108.
[34] 邵良杉,马寒,温廷新. 因子分析与支持向量机相结合的煤炭自燃预测[J]. 辽宁工程技术大学学报(自然科学版),2014,33(4):433−436. SHAO Liangshan, MA Han, WEN Tingxin. Coal spontaneous combustion prediction model of support vector machine combined with factor analysis[J]. Journal of Liaoning Technical University (Natural Science), 2014, 33(4): 433−436.
[35] HAGIWARA K, FUKUMIZU K. Relation between weight size and degree of over-fitting in neural network regression[J]. Neural Networks, 2008, 21(1): 48−58. doi: 10.1016/j.neunet.2007.11.001
[36] 邓军,雷昌奎,曹凯,等. 采空区煤自燃预测的随机森林方法[J]. 煤炭学报,2018,43(10):2800−2808. DENG Jun, LEI Changkui, CAO Kai, et al. Random forest method for predicting coal spontaneous combustion in gob[J]. Journal of China Coal Society, 2018, 43(10): 2800−2808.
[37] 郑学召,李梦涵,张嬿妮,等. 基于随机森林算法的煤自燃温度预测模型研究[J]. 工矿自动化,2021,47(5):58−64. ZHENG Xezhao, LI Menghan, ZHANG Yanni, et al. Research on the prediction mode of coal spontaneous combustion temperature based on random forest algorithm[J]. Industry and Mine Automation, 2021, 47(5): 58−64.
[38] SHUKLA US, MISHRA DP, MISHRA A. Prediction of spontaneous combustion susceptibility of coal seams based on coal intrinsic properties using various machine learning tools[J]. Environmental Science and Pollution Research, 2023, 30(26): 69564−69579. doi: 10.1007/s11356-023-27248-y
[39] 王伟峰,邓军,侯媛彬,等. 采空区煤自燃分布式光纤温度监测预警技术的研究与应用[J]. 矿山机械,2017,45(2):55−60. WANG Weifeng, DENG Jun, HOU Yuanbin, et al. Research and application of distributed optical fiber temperature monitoring and pre-warning technology for spontaneous combustion of coal in goaf[J]. Mining & Processing Equipment, 2017, 45(2): 55−60.
[40] 汪伟,崔欣超,祁云,等. 基于SSA-RF的采空区煤自燃温度回归分析模型[J]. 中国安全科学学报,2023,33(9):136−141. WANG Wei, CUI Xinchao, QI Yun, et al. Regression analysis model of coal spontaneous combustion temperature in goaf based on SSA-RF[J]. China Safety Science Journal, 2023, 33(9): 136−141.
[41] 朱兴攀,许敏,王鹏,等. 分布式温度监测系统在煤自燃预警中的应用[J]. 煤炭工程,2019,51(10):24−27. ZHU Xingpan, XU Min, WANG Peng, et al. Research and application of seamless temperature monitoring system for early warning of coal spontaneous combustion[J]. Coal Engineering, 2019, 51(10): 24−27.
[42] 张东. 基于无线ZigBee技术的露天煤矿煤场安全预警系统[J]. 露天采矿技术,2013(4):79−82. ZHANG Dong. Opencast coal mine safety warning system based on wireless ZigBee technology[J]. Opencast Mining Technology, 2013(4): 79−82.
[43] 岳宁芳,金彦,孙明福,等. 基于多指标气体的煤自燃进程分级预警研究[J]. 安全与环境学报,2020,20(6):2139−2146. YUE Ningfang, JIN Yan, SUN Mingfu, et al. Multi-staged warning system for controlling the coal spontaneous combustion based on the various index gases[J]. Journal of Safety and Environment, 2020, 20(6): 2139−2146.
[44] WANG Caiping, DU Yuxin, DENG Yin, et al. Study on spontaneous combustion characteristics and early warning of coal in a deep mine[J]. Fire, 2023, 6(10): 396.
[45] ZHANG Duo, CEN Xiaoxin, WANG Weifeng, et al. The graded warning method of coal spontaneous combustion in Tangjiahui Mine[J]. Fuel, 2021, 288: 119635. doi: 10.1016/j.fuel.2020.119635
[46] 郭军,王凯旋,金永飞,等. 煤自燃进程精细划分方法及其智能监测预警—煤火精准防控技术变革[J]. 煤炭学报,2023,48(S1):111-121. GUO Jun, WANG Kaixuan, JIN Yongfei, et al. Fine division method of coal spontaneous combustion process and its intelligent monitoring and early warning: Technological change in precise prevention and control of coal fires[J]. Journal of China Coal Society, 2023, 48(S1): 111-129.
[47] 梁运涛,田富超,冯文彬,等. 我国煤矿气体检测技术研究进展[J]. 煤炭学报,2021,46(6):1701−1714. LIANG Yuntao, TIAN Fuchao, FENG Wenbin, et al. Research progress of coal mine gas detection technology in China[J]. Journal of China Coal Society, 2021, 46(6): 1701−1714.
[48] ZHOU Fubao, SHI Bobo, LIU Yingke, et al. Coating material of air sealing in coal mine: Clay composite slurry (CCS)[J]. Applied Clay Science, 2013, 81: 299−304.
[49] BOEKE N, BIRCH G D, NYALE S M, et al. New synthesis method for the production of coal fly ash-based foamed geopolymers[J]. Construction & Building Materials, 2015, 75: 189−199.
[50] ZHENG Xuezhao, ZHANG Duo, WEN Hu. Design and performance of a novel foaming device for plugging air leakage in underground coal mines[J]. Powder Technology, 2019, 344: 842−848. doi: 10.1016/j.powtec.2018.12.064
[51] 梁运涛,罗海珠. 中国煤矿火灾防治技术现状与趋势[J]. 煤炭学报,2008,33(2):126−130. LIANG Yuntao, LUO Haizhu. Current situation and development trend for coal mine fire prevention & extinguishing techniques in China[J]. Journal of China Coal Society, 2008, 33(2): 126−130.
[52] ZHU Hongqing, WANG Haofeng, QIN Wei, et al. Study and application on self-adjusting pressure-balancing system[C]// Progress in Safety a Science and Technolofy, 2005: 1248−1251.
[53] 任万兴,郭庆,左兵召,等. 近距离易自燃煤层群工作面回撤期均压防灭火技术[J]. 煤炭科学技术,2016,44(10):48−52. REN Wanxing, GUO Qing, ZUO Bingzhao, et al. Pressure balanced fire prevention and control technology during equipment withdrawing period of coal mining face in easy spontaneous combustion contiguous seams group[J]. Coal Science and Technology, 2016, 44(10): 48−52.
[54] ZHAI Xiaowei, ZHOU Yujie, ZHANG Duo, et al. Stability properties of slurry based on coal-to-liquid gasification ash slag[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2023, 45(4): 9731−9742.
[55] DU Wenzhou, NIU Kuo, WANG Houwang, et al. Experiment and field application of inhibitor liquid in spontaneous combustion process of coal based on thermogravimetric analysis[J]. Journal of Energy Resources Technology, 2020, 143(2): 1−11.
[56] 王宏飞,王继仁,郝朝瑜,等. 几种无机盐类脱氧型阻化剂耗氧速率试验研究[J]. 中国安全科学学报,2017,27(2):47−52. WANG Hongfei, WANG Jiren, HAO Chaoyu, et al. Experimental study of several inorganic salts-type inhibitor of oxygen consumption rate[J]. China Safety Science Journal, 2017, 27(2): 47−52.
[57] YU Shuijun, XIE Fengcheng, JIA Boyu. Influence study of organic and inorganic additive to coal combustion characteristic[C]//International Conference of Environmental Science and Engineering. 2012: 459−467.
[58] LU Wei, GAO Ao, LIANG Yuntao, et al. Stable and highly efficient HMDS terminated m-Cresol inhibitor for inhibiting coal spontaneous combustion[J]. Energy, 2023, 282: 128915. doi: 10.1016/j.energy.2023.128915
[59] MA Li, WANG Xin, LIU Xixi, et al. Study on the inhibition of coal spontaneous combustion by superabsorbent antioxidant inhibitors[J]. Combustion Science and Technology, [2023-10-18]. https://doi.org/10.1080/00102202.2023.2270150
[60] PULATI N, SOBKOWIAK M, MATHEWS J P, et al. Low-temperature treatment of Illinois No.6 coal in ionic liquids[J]. Energy & Fuels, 2012, 26: 3548−3552.
[61] LIU Hui, GOU Xiaoqing, PAN Kai, et al. Thermodynamics and inhibition mechanism of imidazolium-based ionic liquids for inhibiting spontaneous combustion of iron sulfide[J]. Fuel, 2023, 338: 127335. doi: 10.1016/j.fuel.2022.127335
[62] LU Xinxiao, WANG Mingyang, XUE Xue, et al. An novel experimental study on the thermorunaway behavior and kinetic characteristics of oxidation coal in a low temperature reoxidation process[J]. Fuel:A journal of fuel science, 2022, 310: 122162.
[63] PANDEY J, MOHALIK N K, MISHRA R K, et al. Investigation of the role of fire retardants in preventing spontaneous heating of coal and controlling coal mine fires[J]. Fire Technology, 2015, 51(2): 227−245. doi: 10.1007/s10694-012-0302-9
[64] PAN Rongkun, MA Junwei, FU Dong, et al. Experimental study on the new environmental protection chemical composite inhibitor for the inhibition of coal spontaneous combustion[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139: 37−45. doi: 10.1007/s10973-019-08427-x
[65] QI Xuyao, WEI Cunxiang, LI Qizhong, et al. Controlled-release inhibitor for preventing the spontaneous combustion of coal[J]. Natural Hazards, 2016, 86(2): 891−901.
[66] TANG Li, WANG Gang, WANG Enmao, et al. The fire inhibition characteristics of composite inert gas and its application potential analysis[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021.
[67] 于贵生,王刚,梁运涛. 液氮技术在我国矿井防灭火领域中的应用[J]. 煤矿安全,2012,43(S1):116−118. YU Guisheng, WANG Gang, LIANG Yuntao. Application of liquid nitrogen technology in the field of fire prevention and extinguishing for coal mines in China[J]. Safety in Coal Mines, 2012, 43(S1): 116−118.
[68] 杨广文. 复合型膨胀惰泡及井下远程控制防灭火技术[J]. 煤矿安全,2009,40(9):40−41. YANG Guangwen. Composite expansion inert foam and underground remote fire controlling technology[J]. Safety in Coal Mines, 2009, 40(9): 40−41.
[69] ZHOU Fubao, REN Wanxing, WANG Deming. Application of three-phase foam to fight an extraordinarily serious coal mine fire[J]. International Journal of Coal Geology, 2006, 67(1/2): 95−100.
[70] CHEN Jian, JIA Baoshan, FU Shuoqin, et al. Novel PFA-based inorganic Three-Phase Foam for inhibiting coal spontaneous combustion[J]. ACS Omega, 2023, 8(27): 24615−24623. doi: 10.1021/acsomega.3c02881
[71] LIU Yang, QI Xuyao, LUO Dayong et al. Detection of spontaneous combustion areas of coal gangue dumps and comprehensive governance technologies: a case study[J]. ACS Omega, 2023, 8(50): 47690−47700. doi: 10.1021/acsomega.3c05942
[72] ZHANG Leilin, WU Wenjing, WEI Jian, et al. Preparation of foamed gel for preventing spontaneous combustion of coal[J]. Fuel, 2021, 300: 121024. doi: 10.1016/j.fuel.2021.121024
[73] FAN Xinli, MA Li, SHENG Youjie, et al. Experimental investigation on the characteristics of XG/GG/HPAM gel foam and prevention of coal spontaneous combustion[J]. Energy, 2023, 284: 128710. doi: 10.1016/j.energy.2023.128710
[74] CHENG Jianwei, WU Yuhang, DONG Ziwen, et al. A novel composite inorganic retarding gel for preventing coal spontaneous combustion[J]. Case Studies in Thermal Engineering, 2021, 28: 101648. doi: 10.1016/j.csite.2021.101648
[75] WANG Liang, LIU Zhonyong, YANG Hongyu, et al. A novel biomass thermoresponsive konjac glucomannan composite gel developed to control the coal spontaneous combustion: fire prevention and extinguishing properties[J]. Fuel, 2021, 306(3): 121757.
[76] ZHOU Gang, LI Shuailong, MENG Qunzhi, et al. Synthesis and performance of a new temperature-sensitive and super-absorbent fire prevention hydrogel based on ultrasonic method[J]. Colloids and Surfaces, A. Physicochemical and Engineering Aspects, 2022, 640: 128399. doi: 10.1016/j.colsurfa.2022.128399
[77] CHENG Weimin, HU Xiangming, XIE Jun, et al. An intelligent gel designed to control the spontaneous combustion of coal: fire prevention and extinguishing properties[J]. Fuel, 2017, 210: 826−835. doi: 10.1016/j.fuel.2017.09.007
[78] HUANG Zhinan, SUN Chuanwu, GAO Yukun, et al. R&D of colloid components of composite material for fire prevention and extinguishing and an investigation of its performance[J]. Process Safety and Environmental Protection, 2018, 113: 357−368. doi: 10.1016/j.psep.2017.11.004
[79] 王德明,李增华,秦波涛,等. 一种防治矿井火灾的绿色环保新材料的研制[J]. 中国矿业大学学报,2004,33(2):81−84. WANG Deming, LI Zenghua, QIN Botao, et al. Development of a non-pollution material of environmental protection for mine fire control[J]. Journal of China University of Mining & Technology, 2004, 33(2): 81−84.
[80] 张辉,王威. FHS型稠化胶体灭火剂失重率及阻化抗燃性研究[J]. 安全,2005(1):26−27. ZHANG. Hui, WANG Wei. FHS losing weight and melt preventing performance[J]. Safety & Security, 2005(1): 26−27.
[81] 黄艳芹. 稠化胶体防灭火材料的性能研究[J]. 消防科学与技术,2013,32(8):894−896. HUANG Yanqin. Study on the performance of fire-fighting and preventing superabsorbent thickening colloid[J]. Fire Science and Technology, 2013, 32(8): 894−896.
[82] KOROBEINICHEV OP, SHMAKOV AG, SHVARTSBERG VM, et al. Fire suppression by low-volatile chemically active fire suppressants using aerosol technology[J]. Fire Safety Journal, 2012, 51: 102−109. doi: 10.1016/j.firesaf.2012.04.003
[83] 马砺,马武阳,魏泽,等. 钠盐微胶囊制备及其阻化性能研究[J]. 煤矿安全,2022,53(9):94−99. MA Li, MA Wuyang, WEI Ze, et al. Study on preparation and resistance properties of sodium salt microcap-sules[J]. Safety in Coal Mines, 2022, 53(9): 94−99.
[84] XUE Di, HU Xiangming, CHENG Weiming, et al. Carbon dioxide sealing-based inhibition of coal spontaneous combustion: A temperature-sensitive micro-encapsulated fire-retardant foamed gel[J]. Fuel, 2020, 266: 117036. doi: 10.1016/j.fuel.2020.117036
[85] 张嬿妮,舒盼,刘春辉,等. 乙二胺四乙酸微胶囊阻化煤自燃性能研究[J]. 煤炭科学技术,2022,50(8):108−117. ZHANG Yanni, SHU Pan, LIU Chunhui, et al. Study on inhibition of coal spontaneous combustion by ethylenedia mine tetraacetic acid microcapsule[J]. Coal Science and Technology, 2022, 50(8): 108−117.
[86] 易欣,张少航,葛龙,等. 好氧微生物抑制煤自燃机理研究现状及展望[J]. 洁净煤技术,2023,29(2):198−205. YI Xin, ZHANG Shaohang, GE Long, et al. Present situation and prospect of research on mechanism of inhibiting coal spontaneous combustion by aerobic microorganisms[J]. Clean Coal Technology, 2023, 29(2): 198−205.
[87] STAFFORD A, REQUIST KWB, LOPEZ SL, et al. Underground mining self-escape and mine rescue practices: an overview of current and historical trends[J]. Mining Metallurgy & Exploration, 2023, 40: 2243−2253.
[88] 王亚阳,王汉斌. 基于熵值-理想点法的煤矿事故应急资源调配研究[J]. 安全与环境工程,2014,21(6):135−139. WANG Yayang, WANG Hanbin. Srudy on resource emergency allocation of coal mine accidents based on entropy-ideal point method[J]. Safety and Environmental Engineering, 2014, 21(6): 135−139.
[89] 陈东晓,张瑞新,张伟,等. 煤矿生产安全事故应急预案的结构化研究[J]. 煤炭技术,2015,34(6):301−303. CHEN Dongxiao, ZHANG Ruixin, ZHANG Wei, et al. Research on structure of coal mine production safety accidentemergency plan[J]. Coal Technology, 2015, 34(6): 301−303.
[90] 杨梦,周恩波. 煤矿智能应急预案生成系统设计与关键技术[J]. 煤矿安全,2018,49(7):96−98. YANG Meng, ZHOU Enbo. Design and key technologies for coal mine intelligent emergency plan generation system[J]. Safety in Coal Mines, 2018, 49(7): 96−98.
[91] 王娟,戴凤威,方博. 煤矿事故应急响应的风险决策研究[J]. 中国安全生产科学技术,2018,14(6):21−26. WANG Juan, DAI Fengwei, FANG Bo. Research on risk decision-making of emergency response to coal mine accidents[J]. Journal of Safety Science and Technology, 2018, 14(6): 21−26.
[92] 杨乃定,吴静杰. 基于直觉模糊软集的煤矿应急救援决策方法[J]. 运筹与管理,2019,28(1):54−60. YANG Naiding, WU Jingjie. Emergency rescue decision-making method for coal mine based on intuitionistic fuzzy soft sets[J]. Operations Research and Management Science, 2019, 28(1): 54−60.
[93] LIU Jinyong. Research on application of UWB wireless communication system based on multi-antenna array in mine emergency rescue[C]//2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC). 2019.
[94] 王理,王峰,张军杰,等. 车载矿山应急救援指挥辅助决策系统[J]. 煤矿安全,2009,40(6):68−70. WANG Li, WANG Feng, ZHANG Junjie, et al. Vehicle mine emergency rescue command assistant decision-making system[J]. Safety in Coal Mines, 2009, 40(6): 68−70.
[95] LEI Kejiang, QIU Dandan, ZHANG Shilong, et al. Coal mine fire emergency rescue capability assessment and emergency disposal research[J]. Sustainablity, 2023, 15(11): 8501. doi: 10.3390/su15118501
[96] YANG Fengfeng, ZHANG Jufeng, JIN Bangxin, et al. Study on the emergency capacity of coal mine enterprises in Longdong Area based on D-FAHP method[J]. Scientific Reports, 2023, 13(1): 7503. doi: 10.1038/s41598-023-34618-6
-
期刊类型引用(9)
1. 李杰林,刘一良,王玉普,李在利,周科平,程春龙. 高温独头巷道压抽混合式通风参数对人工制冷降温效果的影响. 黄金科学技术. 2024(01): 63-74 . 百度学术
2. 荣腾龙,任箫剑,陈召,王嘉尉,王龙飞,刘鹏炬. 深部矿井TBM掘进巷道通风及降温耦合模拟分析. 河南理工大学学报(自然科学版). 2024(06): 18-26 . 百度学术
3. 赵建明,黎旭博,孙文涛. 通风及机械制冷条件下高家堡煤矿3407掘进巷道降温研究. 陕西煤炭. 2024(12): 31-37 . 百度学术
4. 杨建,孟德龙,刘浩东,王刚. 煤矿高温多湿掘进巷道制冷负荷计算及降温技术. 煤矿安全. 2023(03): 40-45 . 本站查看
5. 聂兴信,刘哲伟,高赵祥,程平. 高温金属矿井巷道掘进中组合压冷风筒布位对降温效果的影响. 黄金科学技术. 2022(01): 85-92 . 百度学术
6. 郭对明,李国清,侯杰,胡乃联. 基于FLUENT的深井掘进巷道局部通风参数优化. 黄金科学技术. 2022(05): 753-763 . 百度学术
7. 冯钊. 远距离掘进作业面通风管理研究. 能源与节能. 2021(02): 139-140 . 百度学术
8. 郝英杰,王春龙. 深部高温开掘工作面降温技术研究与应用. 世界有色金属. 2021(03): 158-159 . 百度学术
9. 李杰林,喻晓丽,黄冲红,周科平,程春龙. 高温矿井掘进工作面冰块降温数值模拟研究. 中国安全生产科学技术. 2021(08): 97-103 . 百度学术
其他类型引用(1)