• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

顶板导水通道瞬变电磁响应特征及应用

仇念广, 李松营, 闫国才, 姚小帅, 张万鹏, 金明方, 赵红利

仇念广,李松营,闫国才,等. 顶板导水通道瞬变电磁响应特征及应用[J]. 煤矿安全,2024,55(7):179−187. DOI: 10.13347/j.cnki.mkaq.20230860
引用本文: 仇念广,李松营,闫国才,等. 顶板导水通道瞬变电磁响应特征及应用[J]. 煤矿安全,2024,55(7):179−187. DOI: 10.13347/j.cnki.mkaq.20230860
QIU Nianguang, LI Songying, YAN Guocai, et al. Transient electromagnetic response characteristics and application of roof water channel[J]. Safety in Coal Mines, 2024, 55(7): 179−187. DOI: 10.13347/j.cnki.mkaq.20230860
Citation: QIU Nianguang, LI Songying, YAN Guocai, et al. Transient electromagnetic response characteristics and application of roof water channel[J]. Safety in Coal Mines, 2024, 55(7): 179−187. DOI: 10.13347/j.cnki.mkaq.20230860

顶板导水通道瞬变电磁响应特征及应用

基金项目: 国家自然科学基金资助项目(42004088)
详细信息
    作者简介:

    仇念广(1987—),男,山东济宁人,高级工程师,硕士,主要从事地球物理勘探方面的工作。E-mail:qiunianguag@126.com

  • 中图分类号: TD745

Transient electromagnetic response characteristics and application of roof water channel

  • 摘要:

    针对西北干旱-半干旱矿区煤层顶板水害问题,为了查明回采工作面顶板导水通道分布范围,依据全空间瞬变电磁理论与时域有限差分算法,结合示范矿区地层电性特征建立正演地电模型,通过数值模拟研究了回采工作面顶板导水通道的不同磁场分量、不同时刻和不同探测角度的磁场响应特征,并在新疆示范矿区开展了应用试验。结果表明:线框法线方向所对应的磁场分量(Hy)强度最大,分布趋势最简单;磁场强度与衰减梯度随时间延迟逐渐衰减降低,在顶板导水通道处会产生二次感应,并以此为二次场源向外扩散衰减;Hy可识别顶板导水通道,最大有效探测仰角为75°;示范矿区的应用试验及后期钻探验证了瞬变电磁法在回采工作面顶板导水通道探测中的可行性与准确性。

    Abstract:

    Aiming at the problem of coal seam roof water disaster in arid and semi-arid mining areas in northwest China, in order to find out the distribution range of roof water channel in mining face, based on the whole space transient electromagnetic theory and the finite difference time domain algorithm, combined with the electrical characteristics of the strata in the demonstration mining area, a forward geoelectric model was established. The magnetic field response characteristics of different magnetic field components, different time and different detection angles of roof water channel in mining face were studied by numerical simulation, and the application experiment was carried out in the demonstration mining area of Xinjiang. The results show that the amplitude of the Hy magnetic field component corresponding to the normal direction of the wire frame is the largest, the magnetic field distribution trend is the simplest. The magnetic field intensity and attenuation gradient gradually decrease with time delay, and a secondary induction will be generated at the water channel of the roof, which will be used as the secondary field source to diffuse outward and attenuate. The Hy magnetic field component can identify the roof water channel, and the maximum effective detection elevation angle is 75°. The application experiment and later drilling in the demonstration mining area verify the feasibility and accuracy of the transient electromagnetic method in the detection of the roof water channel in the mining face.

  • 图  1   正演模型

    Figure  1.   Forward model

    图  2   500 μs时z=40 m切片的不同磁场分量场强分布图

    Figure  2.   Field strength distribution of different magnetic field components of z=40 m slice at 500 μs

    图  3   不同时刻x=1 m切片的Hy场强分布图

    Figure  3.   Field strength distribution of Hy of x=1 m slice at different time

    图  4   不同探测角度x= 1 m切片的Hy场强分布图

    Figure  4.   Field strength distribution of Hy of x= 1 m slice with different detection angles

    图  5   y= 34 m切片的HyHz场强分布图

    Figure  5.   Field strength distribution of Hy and Hz components of y= 34 m slice

    图  6   探测角度布设示意图

    Figure  6.   Detection angle diagram

    图  7   11602工作面顶板不同高度视电阻率立体切片

    Figure  7.   Stereoscopic slices of apparent resistivity at different roof heights in 11602 working face

    表  1   工作面含(隔)水层一览表

    Table  1   List of working face aquifers and aquifuges

    含水层
    隔水层
    厚度/m 岩性特征 水文地质特征
    第四系残坡积透水不含水层 <15 砂砾石、砂土及腐殖土。透水性良好,不具备储水条件,为透水不含水层。
    中侏罗统头屯河组隔水层 248.86 砾岩、砂砾岩、粗砂岩、粉砂岩、泥质粉砂岩、粉砂质泥岩、泥岩,其中透水性较差的泥岩、粉砂质泥岩起相对隔水作用
    中侏罗统西山窑组裂隙-孔隙弱富水含水层 445.27 浅灰色粗砂岩、中砂岩,深灰色粗砂岩、粉砂岩、泥岩、炭质泥岩和煤层,1#~9#煤层自上而下分布。 单孔涌水量4.32~ 6.72 m3/d,渗透系数0.001 6~0.005 7 m/d,钻孔单位涌水量0.00430.0050 L/(s·m)(q<0.1 L/(s·m),静水位标高1 246.67~1 441.55 m,属弱富水含水层。水化学类型属Cl·SO4−Na型、SO4·Cl−Na型、Cl−Na型水,溶解性总固体质量浓度1930.23398.0 mg/L,pH值7.55~9.45。
    烧变岩含水带 烧变岩,硬而脆,裂隙发育,岩石破碎,孔隙大,透水性强。
    下侏罗统三工河组隔水层 52.16 顶部以灰色、灰绿色、灰白色砂岩为主,夹泥岩和粉砂岩,中、下部以泥岩、粉砂岩和细砂岩为主,可形成隔水层。
    下载: 导出CSV
  • [1] 丁百川. 我国煤矿主要灾害事故特点及防治对策[J]. 煤炭科学技术,2017,45(5):109−114.

    DING Baichuan. Features and prevention countermeasures of major disasters occurred in China coal mine[J]. Coal Science and Technology, 2017, 45(5): 109−114.

    [2] 范超军,王一琦,杨雷,等. 2012—2021年我国煤矿安全事故统计与规律分析[J]. 矿业研究与开发,2023,43(4):182−188.

    FAN Chaojun, WANG Yiqi, YANG Lei, et al. Statistics and regularity analysis of coal mine safety accidents from 2012 to 2021[J]. Mining Research and Development, 2023, 43(4): 182−188.

    [3] 张培森,朱慧聪,李复兴,等. 2008—2019年我国煤矿水害事故统计及演变趋势分析[J]. 煤矿安全,2021,52(8):194−200.

    ZHANG Peisen, ZHU Huicong, LI Fuxing, et al. Evolution trend and statistical analysis of coal mine water disaster accidents in China from 2008 to 2019[J]. Safety in Coal Mines, 2021, 52(8): 194−200.

    [4] 武强,郭小铭,边凯,等. 开展水害致灾因素普查防范煤矿水害事故发生[J]. 中国煤炭,2023,49(1):3−15.

    WU Qiang, GUO Xiaoming, BIAN Kai, et al. Carrying out general survey of the water disaster-causing factors to prevent the occurrence of coal mine water disasters[J]. China Coal, 2023, 49(1): 3−15.

    [5] 于景邨,刘志新,汤金云,等. 用瞬变电磁法探查综放工作面顶板水体的研究[J]. 中国矿业大学学报,2007,36(4):542−546. doi: 10.3321/j.issn:1000-1964.2007.04.025

    YU Jingcun, LIU Zhixin, TANG Jinyun, et al. Transient electromagnetic detecting technique for water hazard to the roof of fully mechanized sub-level caving face[J]. Journal of China University of Mining & Technology, 2007, 36(4): 542−546. doi: 10.3321/j.issn:1000-1964.2007.04.025

    [6] 刘晓宁. 瞬变电磁技术在工作面顶板水害防治中的应用[J]. 煤矿安全,2020,51(3):153−156.

    LIU Xiaoning. Application of transient electromagnetic method in coal mine roof water hazard prevention and treatment[J]. Safety in Coal Mines, 2020, 51(3): 153−156.

    [7] 李宏杰. 瞬变电磁探测技术在煤矿防治水中的应用[J]. 煤矿安全,2013,44(4):159−161.

    LI Hongjie. Application of transient electromagnetic method in mine water prevention and control[J]. Safety in Coal Mines, 2013, 44(4): 159−161.

    [8] 许海涛,任建军,李永军. 顶板砂岩水瞬变电磁法探测及探放水设计[J]. 矿业安全与环保,2014,41(1):43−46. doi: 10.3969/j.issn.1008-4495.2014.01.013

    XU Haitao, REN Jianjun, LI Yongjun. Detection of roof sandstone water by transient electromagnetic method and design of water exploration and drainage[J]. Mining Safety & Environmental Protection, 2014, 41(1): 43−46. doi: 10.3969/j.issn.1008-4495.2014.01.013

    [9] 李洋,王金平,魏启明. 瞬变电磁法在井下工作面顶板导水裂缝探测中的应用[J]. 煤田地质与勘探,2018,46(S1):66−71.

    LI Yang, WANG Jinping, WEI Qiming. Application of transient electromagnetic method for detecting water-conducting crack in the roof of underground working face[J]. Coal Geology & Exploration, 2018, 46(S1): 66−71.

    [10] 李明星. 综合物探在大型断层破碎带探测中的应用[J]. 中国煤炭,2018,44(8):53−57. doi: 10.3969/j.issn.1006-530X.2018.08.010

    LI Mingxing. Application of comprehensive geophysical prospecting technology in detecting large fault fracture zone[J]. China Coal, 2018, 44(8): 53−57. doi: 10.3969/j.issn.1006-530X.2018.08.010

    [11] 杨松,汤平,叶辰,等. 上覆采空区富水规律瞬变电磁分析[J]. 煤炭技术,2020,39(10):120−123.

    YANG Song, TANG Ping, YE Chen, et al. Transient electromagnetic analysis of water-rich law in overlying goaf[J]. Coal Technology, 2020, 39(10): 120−123.

    [12] 黄忠正,姜国庆,王军,等. 封闭不良钻孔矿井瞬变电磁法超前精细探测研究[J]. 煤田地质与勘探,2022,50(8):142−148. doi: 10.12363/issn.1001-1986.21.12.0841

    HUANG Zhongzheng, JIANG Guoqing, WANG Jun, et al. Study of advance elaborate detection with transient electromagnetic method for mine with closed poor boreholes[J]. Coal Geology & Exploration, 2022, 50(8): 142−148. doi: 10.12363/issn.1001-1986.21.12.0841

    [13] 岳建华,杨海燕,胡搏. 矿井瞬变电磁法三维时域有限差分数值模拟[J]. 地球物理学进展,2007,22(6):1904−1909. doi: 10.3969/j.issn.1004-2903.2007.06.036

    YUE Jianhua, YANG Haiyan, HU Bo. 3D finite difference time domain numerical simulation for TEM in-mine[J]. Progress in Geophysics, 2007, 22(6): 1904−1909. doi: 10.3969/j.issn.1004-2903.2007.06.036

    [14] 刘志新,刘树才,刘仰光. 矿井富水体的瞬变电磁场物理模型实验研究[J]. 岩石力学与工程学报,2009,28(2):259−266. doi: 10.3321/j.issn:1000-6915.2009.02.006

    LIU Zhixin, LIU Shucai, LIU Yangguang. Research on transient electromagnetic field of mine water-bearting structure by physical model experiment[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(2): 259−266. doi: 10.3321/j.issn:1000-6915.2009.02.006

    [15] 于景邨,常江浩,苏本玉,等. 老空水全空间瞬变电磁法探测三维数值模拟研究[J]. 煤炭科学技术,2015,43(1):95−99.

    YU Jingcun, CHANG Jianghao, SU Benyu, et al. Study on whole space transient electromagnetic method prospect three dimensional numerical modeling of gob water[J]. Coal Science and Technology, 2015, 43(1): 95−99.

    [16] 袁永榜,易洪春,鲜鹏辉. 矿井老空水超前探测瞬变电磁响应特征[J]. 矿业安全与环保,2020,47(4):103−106.

    YUAN Yongbang, YI Hongchun, XIAN Penghui. Response characteristics of transient electromagnetic in advance detection of goaf water[J]. Mining Safety & Environmental Protection, 2020, 47(4): 103−106.

    [17] 常江浩,于景邨,蒋宗霖. 煤矿老空水瞬变电磁响应特征数值模拟[J]. 矿业安全与环保,2014,41(3):4−8. doi: 10.3969/j.issn.1008-4495.2014.03.002

    CHANG Jianghao, YU Jingcun, JIANG Zonglin. Numerical simulation of transient electromagnetic response characteristics of mine gob water[J]. Mining Safety & Environmental Protection, 2014, 41(3): 4−8. doi: 10.3969/j.issn.1008-4495.2014.03.002

    [18] 程久龙,邱浩,叶云涛,等. 矿井瞬变电磁法波场变换与数据处理方法研究[J]. 煤炭学报,2013,38(9):1646−1650.

    CHENG Jiulong, QIU Hao, YE Yuntao, et al. Research on wave-field transformation and data processing of the mine transient electromagnetic method[J]. Journal of China Coal Society, 2013, 38(9): 1646−1650.

    [19] 杨海燕. 矿用多匝小回线源瞬变电磁场数值模拟与分布规律研究[D]. 徐州:中国矿业大学,2009.
    [20] 梁庆华. 矿井全空间小线圈瞬变电磁探测技术及应用研究[D]. 长沙:中南大学,2012.
    [21] 王军,程久龙,黄忠正,等. 矿井瞬变电磁法探测顶板低阻岩层富水性[J]. 矿业安全与环保,2023,50(1):76−81.

    WANG Jun, CHENG Jiulong, HUANG Zhongzheng, et al. Mine transient electromagnetic method in detecting the water abundance of rock strata with low resistance in roof[J]. Mining Safety & Environmental Protection, 2023, 50(1): 76−81.

    [22]

    WANG T, HOHMANN G W. A finite-difference, time-domain solution for three-dimensional electromagnetic modeling[J]. Geophysics, 1993, 58(6): 797−809. doi: 10.1190/1.1443465

    [23] 孙怀凤,李貅,李术才,等. 考虑关断时间的回线源激发TEM三维时域有限差分正演[J]. 地球物理学报,2013,56(3):1049−1064. doi: 10.6038/cjg20130333

    SUN Huaifeng, LI Xiu, LI Shucai, et al. Three-dimensional FDTD modeling of TEM excited by a loop source considering ramp time[J]. Chinese Journal of Geophysics, 2013, 56(3): 1049−1064. doi: 10.6038/cjg20130333

    [24]

    YEE K S. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas & Propagation, 1966, 14(5): 302−307.

    [25] 易洪春,袁永榜,牟义,等. 基于电磁场合矢量的陷落柱三维模拟及其探测[J]. 科学技术与工程,2022,22(18):7789−7798. doi: 10.3969/j.issn.1671-1815.2022.18.008

    YI Hongchun, YUAN Yongbang, MU Yi, et al. Three-dimensional numerical simulation of caved column based on vector of electromagnetic field and its detection applications[J]. Science Technology and Engineering, 2022, 22(18): 7789−7798. doi: 10.3969/j.issn.1671-1815.2022.18.008

  • 期刊类型引用(1)

    1. 柳昭星. 奥陶系灰岩顶部劈裂注浆裂隙起裂机制试验研究. 采矿与安全工程学报. 2023(01): 204-214 . 百度学术

    其他类型引用(2)

图(7)  /  表(1)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  3
  • PDF下载量:  3
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-06-24
  • 修回日期:  2023-07-11
  • 刊出日期:  2024-07-19

目录

    /

    返回文章
    返回