Optimization study of air cooler position and air flow parameters in coal mining face
-
摘要:
针对济宁二号煤矿10303采煤工作面高温热害问题,采用数值分析方法,建立了工作面物理模型,分析了风筒长度、风筒的出风口距离及温度等多因素对降温系统的影响,确定了不同工况(生产和停产)的温度控制参数;通过自动启闭控温设施控制空冷器出风温度,实现了不同作业下采煤工作面所需的制冷量,解决了工作面高温热害问题。结果表明:100 m风筒长度、50 m风筒出风距离的降温效果最好;当工作面正常开采作业时,出风温度设置应小于16.5 ℃,工作面的平均温度将降低3.7 ℃;当停采作业时,出风温度设置应小于20.5 ℃,此时工作面的平均温度将降低3.5 ℃;2种工况下的参数均能达到采煤工作面的温度控制目标。
Abstract:In order to solve the problem of high temperature and heat damage in the 10303 coal mining face of Jining No.2 Coal Mine, numerical analysis method was used to establish a physical model of the working face and to analyze the influence of multiple factors on the cooling system, such as the length of the wind pipe, the distance between the air outlet of the wind pipe and the temperature, and determine the temperature control parameters for different working conditions (production and shutdown), and then control the temperature of the air cooler air outlet through the automatic opening and closing of the temperature-control facilities, so that the required cooling capacity of the coal mining face is realized under different operations. The cooling capacity required by the working face is realized under different operations, and the problem of high-temperature heat damage in the working face is solved. The results show that the cooling effect of 100 m length of wind pipe and 50 m distance of wind pipe is the best. When the working face is under normal mining operation, the outlet temperature setting should be less than 16.5 ℃, and the average temperature of the working face will be reduced by 3.7 ℃; when the mining operation is stopped, the outlet temperature setting should be less than 20.5 ℃, and the average temperature of the working face will be reduced by 3.5 ℃, and the parameters of the two working conditions can achieve the temperature control target of the coal mining working face.
-
Keywords:
- cooling control system /
- air cooler /
- cooling load /
- numerical simulation /
- heat hazard management
-
-
表 1 降温设备参数
Table 1 Cooling equipment parameters
机组型号及名称 项目 数值 机组-1500/6000矿用防爆制冷装置 单台机组制冷量/kW 1500 单台机组轴功率/kW 341 单台机组主电机功率/kW 400 单台机组油泵电机功率/kW 1.1 卧式壳管式冷凝器 冷却水侧阻力损失/MPa ≤0.1 冷却水进水温度/℃ 30 冷却水出水温度/℃ 40 冷却水流量/(m3·h−1) 160 冷却水进出管径/mm DN200 满液式蒸发器 载冷剂侧阻力损失/MPa ≤0.1 载冷剂流量/(m3·h−1) 120 冷冻水进出管径/mm DN150 空冷器-450 压力等级/PN 64 冷却功率/kW 450 进风温度/℃ 32 出风温度/℃ 22 进水温度/℃ 5 出水温度/℃ 16 -
[1] 周鑫方. 矿井气候条件多场耦合风网解算及灾变演化特性[D]. 徐州:中国矿业大学,2022. [2] 姬建虎. 掘进工作面传热特性及热害治理研究[D]. 重庆:重庆大学,2014. [3] 辛嵩,孟祥喜,屈永良,等. 大倾角采煤工作面热害机理分析[J]. 山东科技大学学报(自然科学版),2016,35(5):42−48. XIN Song, MENG Xiangxi, QU Yongliang, et al. Mechanism analysis of heat harm in large dip angle coal mining working face[J]. Journal of Shandong University of Science and Technology (Natural Science Edition), 2016, 35(5): 42−48.
[4] 张安山,徐召栋,李新欣. 智能降温及冷冻水自动控制技术在郭屯煤矿的研究与应用[J]. 山东煤炭科技,2022,40(5):12−14. doi: 10.3969/j.issn.1005-2801.2022.05.005 ZHANG Ansan, XU Zhaodong, LI Xinxin. Research and application of intelligent cooling and automatic control technology of frozen water in Guotun Coal Mine[J]. Shandong Coal Science and Technology, 2022, 40(5): 12−14. doi: 10.3969/j.issn.1005-2801.2022.05.005
[5] 丁武聚. 大体积混凝土自动控制降温系统的应用[J]. 工程与建设,2018,32(2):265−267. doi: 10.3969/j.issn.1673-5781.2018.02.037 DING Wuju. Application of large volume concrete automatic control cooling system[J]. Engineering and Construction, 2018, 32(2): 265−267. doi: 10.3969/j.issn.1673-5781.2018.02.037
[6] 刘德泼,陈军,陆建军,等. 过热蒸汽喷水降温装置及自动调节控制系统[J]. 科技与创新,2018,103(7):135−136. [7] 刘娜,宋慧,张玉良,等. 掘进工作面自动降温系统设计与应用[J]. 煤炭工程,2016,48(6):23−25. LIU Na, SONG Hui, ZHANG Yuliang, et al. Design and application of automatic cooling system in driving face[J]. Coal Engineering, 2016, 48(6): 23−25.
[8] 尹晶晶,徐振峰. 温室降温模式自动切换控制研究[J]. 淮海工学院学报(自然科学版),2018,27(4):38−42. YIN Jingjing, XU Zhenfeng. Research on automatic switching control of greenhouse cooling mode[J]. Journal of Huaihai University of Technology (Natural Science Edition), 2018, 27(4): 38−42.
[9] 王春耀,周建,简俊常,等. 高温热害矿井通风制冷降温技术[J]. 煤矿安全,2022,53(9):244−250. WANG Chunyao, ZHOU Jian, JIAN Junchang, et al. Ventilation refrigeration and cooling technology of high temperature heat damaged mine[J]. Safety in Coal Mines, 2022, 53(9): 244−250.
[10] 孟晓静,胡亚年,崔雁弼. 喷雾系统对室内高温环境的降温效果研究[J]. 工业安全与环保,2022,48(12):66−69. MENG Xiaojing, HU Yanian, CUI Yanbi. Study on cooling effect of spray system on indoor hot environment[J]. Industrial Safety and Environmental Protection, 2022, 48(12): 66−69.
[11] 陈密武. 深井矿井热害治理技术[J]. 煤矿安全,2017,48(2):131−134. CHEN Miwu. Treatment technology for heat damage in deep mine[J]. Safety in Coal Mines, 2017, 48(2): 131−134.
[12] 杨娜. 济宁二号煤矿热害治理与余热利用改造项目[J]. 山东工业技术,2019(11):74. [13] 汪杰,毛国勇,陈海琴. 采煤工作面降温系统布置方式优化研究[J]. 工矿自动化,2018,44(12):43−48. WANG Jie, MAO Guoyong, CHEN Haiqin. Research on optimization of layout method of cooling system on coal face[J]. Industry and Mine Automation, 2018, 44(12): 43−48.
[14] 辛嵩,张龙,张琪,等. 超长采煤工作面降温技术研究[J]. 煤炭技术,2017,36(12):98−100. XIN Song, ZHANG Long, ZHANG Qi, et al. Study on cooling technique of super-long coal face[J]. Coal Technology, 2017, 36(12): 98−100.
[15] 辛嵩,高攀攀,简俊常,等. 高效空冷器在赵楼煤矿采煤工作面的应用[J]. 煤矿安全,2018,49(3):91−94. XIN Song, GAO Panpan, JIAN Junchang, et al. Application of high efficiency air cooler for coal mining face in Zhaolou Coal Mine[J]. Safety in Coal Mines, 2018, 49(3): 91−94.
-
期刊类型引用(5)
1. 王江宏,高阳,程志斌,周建强,李各,王文. 基于程序升温—热动力学的自然发火分级预警方法. 能源与环保. 2024(05): 8-15 . 百度学术
2. 石磊,武超,吕冬,卢卫永,王鹏,孙耀辉. 基于能量耗散理论的深部巷道围岩松动圈范围分析. 煤矿安全. 2024(10): 150-157 . 本站查看
3. 赵佳佳,田世祥,杨家向,江泽标. 基于知识图谱的煤矿热动力灾害可视化研究. 煤矿安全. 2023(03): 33-39 . 本站查看
4. 刘俊. 王庄煤矿高应力综放面巷道围岩控制技术. 山西煤炭. 2023(02): 11-18 . 百度学术
5. 于世勇. 煤矿用空压机智能群控节能控制系统的应用研究. 内蒙古煤炭经济. 2022(21): 21-23 . 百度学术
其他类型引用(1)