Influence of air pressure and water pressure on particle size of ultrasonic atomization spray
-
摘要:
为了研究气压和水压对超声雾化喷雾粒径参数的影响;设计了实验平台,选用了阴离子型表面活性剂快渗T配置成浓度为0.07%的溶液进行实验;分析在不同气压和水压的组合之下超声雾化喷雾粒径参数的变化情况。实验结果表明:粒径参数D10、D50、D90、VAD、SMD、NAD随着气压的增加而减小,减小幅度受到水压影响;同时,以上粒径参数也随着水压的增加而增大,增大幅度也会受到气压影响,气压对雾滴粒径变化的影响程度大于水压;当压力改变时,粒径参数D10和NAD的变化趋势呈现高度一致,D50、VAD、SMD粒径增加量呈现高度一致,总体上D90变化幅度最大,D10变化幅度最小。
Abstract:In order to study the influence of air pressure and water pressure on the particle size parameters of ultrasonic atomization spray, an experimental platform was designed in this paper. Anionic surfactant rapid infiltration T was selected to configure a solution with a concentration of 0.07 % for experiment. The changes of particle size parameters of ultrasonic atomization spray under different combinations of air pressure and water pressure were analyzed. The experimental results show that the particle size parameters D10, D50, D90, VAD, SMD and NAD decrease with the increase of air pressure, and the decrease is affected by water pressure. At the same time, the above particle size parameters also increase with the increase of water pressure, and the increase will also be affected by air pressure. The influence of air pressure on the change of droplet size is greater than that of water pressure. When the pressure changes, the change trend of particle size parameters D10 and NAD is highly consistent, and the increase of particle size of D50, VAD and SMD is highly consistent.
-
煤自燃严重威胁着煤矿安全生产与工人生命安全[1-2]。精准的识别煤自燃发生的区域是有效抑制煤自燃的基础。温度是表征煤自燃状态的关键因素[3]。由于采空区的复杂性,目前常用的测氡法、电阻率法、磁探测法等火源探测方法都难以实现高温区域的精准定位,从而拖延灾害处理时间,降低处置效率,造成严重后果[4]。
掌握非均质松散煤体中传热传递规律,对于定位火源点位置是十分重要的[5-6]。学者们进行了大量的实验进行研究[7-9]。除采空区自身物化性质,流场也影响其中热量的传递,从而影响温度的分布[10-12]。而矿井中风流常常会由于大气压力、气温以及灾变等因素出现变化,因此呈现非稳态特性[12-15]。非稳态风流下温度场分布以及热量传递规律尚不明确。针对以上问题,建立了非均质采空区相似实验平台,对不同流场边界条件下非均质多孔介质传热规律以温度分布演化规律进行了研究,为隐蔽火源位置的探测及精准防灭火提供了理论指导。
1. 实验设备及材料
实验依托自行设计的采空区温度分布模拟实验平台(图1)进行。实验平台主要包括模型主体,热源、风机、数据采集系和传感器组成。模型主体以温庄煤矿15103工作面与采空区为原型,按照比例尺235∶1建造。模型工作面长1 m,采空区深度1.35 m,高0.1 m,采用“U”型通风方式布置。热源采用
1000 W铝制加热板,外接控制器可以控制加热板温度和加热时间。实验中采用具有无级变速功能的风机作为通风动力源。可调节风速0~5 m/s。数据采集系统可以实现固定时间间隔连续采集、保存数据。温度传感采用PT100型热电阻作为温度传感器。42个传感器按照一定分布规律固定在实验装置底部,另外12个活动传感器可以根据需要在任意位置添加。2. 实验过程及方法
实验主要目的在于探究采空区温度分布的演化规律。按照以下步骤开展实验:
1)对实验平台进行通电调试,保证各设备正常运行。
2)按照“O形圈”规律布置碎煤[16],各位置碎煤粒径如图2所示。并在进风侧预定位置布置加热板,完成后在加热板附近按照预定位置布置活动温度传感器。
3)设置加热板温度200℃,打开温度采集设备,加热2 h后停止加热,保持采集并记录温度数据直至模型内部温度恢复至室温,每隔1 min记录1次温度数据。
4)重复步骤3),分别设定风机风速0.9、1.2 、1.5 m/s。
以上为1个测试周期,工作面采用“U”型通风方式,获得不同风速下采空区温度分布及演化规律。
改变加热板的位置,将热源布置回风侧。按照上述步骤进行实验,可以得到热源位置对于温度分布以及热量传递的影响。
重复步骤1)~4),选风速选择0.9 m/s和1.5 m/s,以30 min为间隔进行交替通风,持续3 h,以探究非稳态风流对高温区域的影响。
3. 实验结果
3.1 温度分布演化规律
加热板位于进风侧时温度分布演化如图3所示。由图3可知:风速0 m/s时,高温区域呈现近似椭圆形分布,椭圆长短轴方向分别对应加热板长和宽的方向,并且只在加热板附近出现了明显的温度上升,以加热板为中心向外扩散,具有较高的温度梯度,温度分布在走向上呈现不均匀分布,高温区域偏向工作面方向,这是由于工作面方向孔隙率较大,热阻小,热量更容易向该方向传递;风速1.5 m/s时,高温区域呈现“蝌蚪状”,存在指向回风侧的高温拖尾,高温区域向回风侧偏移,这是风速0 m/s时未出现的现象,因此可以认为是由于风流经过加热板区域后将热量向下风侧低温区域携带的结果。
120 min之后,停止加热。图3(c)与图3(d)显示了停止加热后温度演化过程。通风条件下,在走向方向上温度分布的不均匀性更加明显,大孔隙率对温度的牵引作用使得温度扩散不均匀,影响采空区温度分布形态。在加热板附近,由于热源的消失,温度开始下降,而边缘高温区域与外围之间依旧存在温度梯度,使得高温区域进一步向外侧扩张;风速1.5 m/s条件下,温度向左侧偏移更为明显,方向指向回风巷方向,迎风侧温度下降较快,温度分布转化为“腰果状”,在300 min时,与不加热情况下相比(图3(c))高温区域形态与位置发生了明显变化,主要高温区域移动至加热板左侧,即偏向回风侧方向。
加热板位于回风侧时不同流场边界条件下温度分布演化情况如图4所示。由图4可以看到,风速0 m/s时温度分布情况与加热板位于进风侧时分布相似,无风流条件下温度分布主要由孔隙率决定,与加热板位置无关;风速1.5 m/s时,温度分布同样出现了偏移,偏移方向指向回风出口处,在180 min时最高温度进一步下降,高温区域呈现“枣核状”,在左侧边界由于保温材料的影响热量累积,温度略微升高。
3.2 风速对温度分的影响
为了更加准确地对不同流场条件下温度分布进行比较,将70 ℃等温线围成的区域定义为高温区域。加热板位于进风侧时高温区域的形态(其中粉色区域代表加热板)如图5所示。120 min时,通风条件下迎风侧边界有所收缩,但不同风速对边界收缩距离影响不大,这是因为风流对煤自燃起2种作用:一是带走自燃产生的热量,二是为煤氧化提供了更多氧气;当煤体温度高于70℃时,煤氧化进入加速阶段,对氧气的需求量增大;风速0.9 m/s时风流对煤体散热作用小于供氧放热作用,因此高温区域边界收缩较小;而风速1.2 m/s与1.5 m/s条件下收缩更为明显是因为风流散热作用大于供氧放热作用。180 min时,加热板停止提供热量,迎风侧不同风速下高温区域边界差异逐渐明显;造成迎风侧边界收缩情况不同的原因是此处温度扩散方向与风流流动方向相反,风流对热量的传递有一定的抑制作用,同时热量供应的减小也间接减缓了煤氧化放热。而对于背风侧高温区域边界,不同风速下高温区域大小有着明显差异;风速越大,高温区域边界越靠近回风侧;一方面温度扩散方向与风流流动方向一致,风流有助于热量的传递,另一方面较大风速为此区域带来了更多氧气,有利于煤自燃放热。
当加热板位于回风侧时高温区域形态如图6所示。由图6可知:与加热板位于进风侧时相似,在迎风侧高温区域边界收缩,而背风侧由于数据采集边界的影响,只在120 min时观察到了边界向外扩张。通风条件下边界变化的原因与加热板位于进风侧时相似。
采空区中风流在流动过程中会通过对流传热来影响采空区中温度分布。按照实验条件对流场进行数值模拟后得到的采空区流场分布与温度分布耦合图如图7所示,图7(a)为加热板位于进风侧浅部,图7(b)为加热板位于回风侧。由图7可以看出,温度偏移的方向与风流运动方向一致。
综上,得到了实验条件下风流对于高温区域的影响原理。未通风时,由于温度梯度作用,热量会向四周扩散,温度的扩散方向由高温中心指向四周;通风时,采空区风流方向大致呈现由进风方向流向回风方向,因此必定有部分风流方向与温度扩散方向相同,另一部分则相反。由多孔介质理论分析可知,风流的流动以及流体本身会对热量传递做贡献。外部流体流向高温区域时,外部流体温度低,因此向高温区域流动过程中吸收热量转化为自身内能(主要体现在温度升高),即高温区域用于向外扩张的能量被流体携带,运送向与温度扩张相反的方向。这就减弱了高温区域向外扩张的倾向,相较于不通风时温度边界向内收缩。当流体流出高温区域时,流体方向与温度扩张方向相同,并且经过高温区域后流体温度上升,高于外部温度,流体中储存的能量在流体向高温区域外流动过程中,与低温区域发生热量交换,周围区域内能增加(温度上升)。也就是说将高温区域的热量携带至外部,增加高温区域的扩张倾向,与不通风相比,表现为温度边界扩张。流体的流动起到了运输热量的作用。
3.3 非稳态风流对温度分布的影响
非稳态风流条件下温度演化如图8所示。由图8可知:温度分布同样存在向回风侧及风流方向偏移的现象,与稳态通风时温度分布形态相似,也就是说,非稳态风流无法改变采空区温度分布。
进一步研究非稳态风流对高温区域偏移程度以及最高温度的影响。热源位于进风侧120 min时高温区域形态以及整个实验过程中高温区域的占比如图9所示。图9(a)中交替通风时高温区域向下风向偏移更大,最右侧偏移距离不仅大于风速1.2 m/s(平均风速)时偏移距离,甚至大于风速1.5 m/s(最大风速)时偏移距离;进风侧不同条件下高温区域边界依旧未出现明显变化。图9(b)中整个实验过程中高温区域面积的占比大于风速1.5 m/s和1.2 m/s情况下高温区域占比。可以用上文提出的理论对这一现象进行解释:在实验中所使用交替通风来模拟非稳态风流,存在着高风速(1.5 m/s)和低风速(0.9 m/s)2种状态。当风速较大时,高温区域向回风侧偏移较多,对比粒径分布可知偏移位置方向孔隙率小于加热板附近。当转换为低风速时,此区域热量补充虽然有所减小,但低孔隙率保证了热量也难以向外散失,当再次切换至高风速时热量补充得以继续。之后两种风速交替循环,造成高温区域面积大于平均风速条件下面积。
不同流场条件下最高温度对比如图10所示。不同条件下各个阶段温度相差并不明显。交替通风与平均风速条件下(1.2 m/min)温度差异更小,在150 min是最大差值仅为2.8 ℃。这是因为高温点位于高温区域内部,风流流经此处时已经经过预热,对此处热量运移影响较小。也就是说,交替通风并不会明显影响最高温度。
3.4 高温区域迁移现象
以加热板位于进风侧、风速1.2 m/s为例,探究高温点迁移过程(图11)。为得到准确的结果,不对图像进行平滑处理。由图11可知整个过程可以分为3个阶段:①0~120 min内,未出现新高温点,高温区域未出现明显偏移;②120~300 min内新高温区域温度高于周围,新高温点形成,高温区域向回风侧偏移;③300~360 min内新高温点温度高于原始高温点,主要高温区域已经偏离加热板。
初始高温点以及新高温点位置温度变化情况如图12所示。不通风时,初始高温点在120 min时温度达到最大值,而新高温点位置温度在150 min时达到最大值。这是因为停止加热后,对初始高温点的额外热量补充停止,温度开始逐渐下降,而距离加热板较远的新高温点位置则因为温度梯度会有一定热量补充,但是仅依靠温度梯度所提供的热量补充较少,随着热量散失温度梯度也逐渐减小,因此温度不会高于原始高温点。而通风后,初始高温点由于风流作用温度散失更快,210 min之后就与不通风时温度差生了较大差距。同时风流可以为新高温区域带去更多热量,在加热阶段已经与不通风时温度有了明显差别。之后使得其在270 min时温度已经超过原始最高温度点。
对高温区域迁移情况进行分析,得到高温区域迁移原理如图13所示。结合图12对高温区域迁移原理解释如下:在加热阶段,加热板上方位置有持续强热源供热,而下风向位置热量补充仅依靠上风向向此区域传递热量,因此下风向区域温度虽有升高,但是不会高于加热板位置,表现为2处温度共同上升,但主要高温区域仍然位置加热板上方;停止加热后,加热板上方热量供应源消失,而下风向位置受上风向热量补充,温度逐渐高于加热板位置,宏观表现为高温区域向下风向的迁移。也就是说高温区域的迁移,是热量散失与补充之间不平衡造成的。
4. 结 论
1)无风条件下,温度场分布形态为长轴水平的椭圆形,形态与加热板在采空区中位置无关。“U”型通风方式下,风流对热量的携带作用使得温度分布会向风流方向偏移,风速越大,高温区域偏移越严重。
2)孔隙率通过影响热量传递进而影响温度分布,宏观上为大孔隙率对温度分布有一定的牵引作用。
3)风流的非稳态性会使得高温区域面积扩大,但不会影响影响最高温度。
4)热量供给与散失的失衡是促使高温点和高温区域移动的主要原因。
-
表 1 不同气压条件下水压从0.1 MPa提高到0.6 MPa时粒径参数变化量
Table 1 Variation of particle size parameters when water pressure increases from 0.1 MPa to 0.6 MPa under different air pressure conditions
气压/MPa ΔD10/μm ΔD50/μm ΔD90/μm ΔVAD/μm ΔSMD/μm ΔNAD/μm 0.1 16.034 19.082 24.307 19.364 18.780 17.633 0.2 23.005 19.348 10.123 17.704 20.820 25.927 0.3 31.121 32.447 29.928 31.189 33.537 36.804 0.4 25.883 40.069 61.325 42.276 37.971 30.479 0.5 22.614 35.494 54.751 37.441 33.625 26.908 0.6 5.0480 7.5890 11.260 7.9210 7.2630 6.0640 表 2 不同水压条件下气压从0.1 MPa提高到0.6 MPa时粒径参数变化量
Table 2 Variation of particle size parameters when air pressure increases from 0.1 MPa to 0.6 MPa under different water pressure conditions
水压/MPa ΔD10/μm ΔD50/μm ΔD90/μm ΔVAD/μm ΔSMD/μm ΔNAD/μm 0.1 31.129 44.607 63.397 46.277 42.971 36.982 0.2 36.131 46.674 60.409 47.590 45.729 42.220 0.3 39.683 49.416 61.478 50.132 48.723 46.011 0.4 39.657 50.918 65.406 51.862 50.050 46.542 0.5 41.097 53.983 71.102 55.203 52.758 48.183 0.6 42.115 56.100 76.444 57.720 54.488 48.551 表 3 未采取防尘措施时工作面现场各测点粉尘浓度数据
Table 3 Dust concentration data of each measuring point in working face without dustproof measures
测点 粉尘浓度/(mg·m−3) 全尘 呼尘 1# 1306.20 443.71 2# 1 121.73 369.56 3# 1 049.62 343.37 4# 1 093.79 375.54 5# 588.23 204.61 6# 467.31 148.69 表 4 采取喷雾降尘措施后工作面现场各测点粉尘浓度数据
Table 4 Dust concentration data of each measuring point on working face after adopting spray dust-reduction measures
测点 粉尘浓度/(mg·m-3) 全尘 呼尘 1# 81.23 80.26 2# 77.54 78.73 3# 78.26 77.85 4# 96.37 95.87 5# 82.59 82.36 6# 97.22 96.64 -
[1] 程卫民,周刚,陈连军,等. 我国煤矿粉尘防治理论与技术20年研究进展及展望[J]. 煤炭科学技术,2020,48(2):1−20. CHENG Weimin, ZHOU Gang, CHEN Lianjun, et al. Research progress and prospect of dust control theory and technology in China’s coal mines in the past 20 years[J]. Coal Science and Technology, 2020, 48(2): 1−20.
[2] ZHANG Jiangshi, SUN Tianliang, YANG Xuesong, et al. Experimental study on dust removal optimization of shearer external spray in air velocity[J]. Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering, 2020, 56(2): 181-189.
[3] 张运增,苏志伟. 神东矿区综合防尘关键技术研究及应用[J]. 煤炭科学技术,2021(S2):123−128. ZHANG Yunzeng, SU Zhiwei. Research and application of key technology of comprehensive dust prevention in Shendong Mining Area[J]. Coal Science and Technology, 2021(S2): 123−128.
[4] 温禄淳. 矿井喷雾降尘超声雾化激振喷嘴参数优化仿真分析[J]. 煤矿安全,2020,51(11):109−112. WEN Luchun. Simulation and analysis of parameters optimization of ultrasonic atomizing nozzle for mine atomizing dust removal[J]. Safety in Coal Mines, 2020, 51(11): 109−112.
[5] TATARKO John, KUCHARSKI Matthew, LI Hongli, et al. PM2.5 and PM10 emissions by breakage during saltation of agricultural soils[J]. Soil and Tillage Research, 2021, 208: 104902. doi: 10.1016/j.still.2020.104902
[6] 李德文,隋金君,刘国庆,等. 中国煤矿粉尘危害防治技术现状及发展方向[J]. 矿业安全与环保,2019,46(6):1−7. LI Dewen, SUI Jinjun, LIU Guoqing, et al. Technical status and development direction of coal mine dust hazard prevention and control technology in China[J]. Mining Safety & Environmental Protection, 2019, 46(6): 1−7.
[7] 袁亮. 煤矿粉尘防控与职业安全健康科学构想[J]. 煤炭学报,2020,45(1):1−7. YUAN Liang. Scientific conception of coal mine dust control and occupational safety[J]. Journal of China Coal Society, 2020, 45(1): 1−7.
[8] 薛文涛,侯茂森,霍中刚,等. 带式输送机转载点气水喷雾降尘效果试验研究[J]. 煤矿安全,2022,53(7):14−19. XUE Wentao, HOU Maosen, HUO Zhonggang, et al. Study on dust removing effect of air-water spraying nozzle at transfer point of belt conveyer[J]. Safety in Coal Mines, 2022, 53(7): 14−19.
[9] 王道涵,邹佳霖. 表面活性剂复配对煤尘润湿性能的影响研究[J]. 矿业安全与环保,2019,46(2):25−28. doi: 10.3969/j.issn.1008-4495.2019.02.006 WANG Daohan, ZOU Jialin. Study on the effect of compound surfactant on coal dust wettability[J]. Mining Safety & Environmental Protection, 2019, 46(2): 25−28. doi: 10.3969/j.issn.1008-4495.2019.02.006
[10] 王晋. 高压细水雾喷嘴对巷道煤尘的喷雾降尘试验研究[J]. 安全与环境工程,2020,27(5):38−41. WANG Jin. Experimental study on spraying dust reduction of roadway coal dust by high-pressure water mist nozzle[J]. Safety and Environmental Engineering, 2020, 27(5): 38−41.
[11] DEL Corno A, SONIA Morandi, FLAVIO Parozzi, et al. Experiments on aerosol removal by high-pressure water spray[J]. Nuclear Engineering and Design, 2017, 311: 28−34. doi: 10.1016/j.nucengdes.2016.06.043
[12] 邬高高,王鹏飞,刘荣华,等. 供气压力对流体型超声喷嘴雾化特性及降尘效率的影响[J]. 煤炭学报,2021,46(6):1898−1906. WU Gaogao, WANG Pengfei, LIU Ronghua, et al. Impact of air supply pressure on the atomization characteristics and dust removal efficiency of fluid ultrasonic nozzle[J]. Journal of China Coal Society, 2021, 46(6): 1898−1906.
[13] 王健,刘荣华,王鹏飞,等. 常用压力式喷嘴雾化特性及降尘性能研究[J]. 煤矿安全,2021,50(8):36−40 WANG Jian, LIU Ronghua, WANG Pengfei, et al. Study on atomization characteristics and dust reduction performance of common pressure nozzles[J]. Safety in Coal Mines, 2021, 50(8): 36−40.
[14] 马威. 煤矿井下气水喷雾雾化效果实验研究及应用[J]. 煤矿安全,2021,52(11):32−37. MA Wei. Experimental research and application of atomization effect of gas-water spray in underground coal mine[J]. Safety in Coal Mines, 2021, 52(11): 32−37.
[15] 秦波涛,周刚,周群,等. 煤矿综采工作面活性磁化水喷雾降尘技术体系与应用[J]. 煤炭学报,2021,46(12):3891−3901. QIN Botao, ZHOU Gang, ZHOU Qun, et al. Dust removal system and application of the surfactant-magnetized water spray in the fully mechanized mining face of coal mines[J]. Journal of China Coal Society, 2021, 46(12): 3891−3901.