• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

废弃采空区封存CO2地表形变特征模拟研究

郭庆彪, 谢扬, 汪锋, 郑美楠

郭庆彪,谢扬,汪锋,等. 废弃采空区封存CO2地表形变特征模拟研究[J]. 煤矿安全,2024,55(5):1−10. DOI: 10.13347/j.cnki.mkaq.20240526
引用本文: 郭庆彪,谢扬,汪锋,等. 废弃采空区封存CO2地表形变特征模拟研究[J]. 煤矿安全,2024,55(5):1−10. DOI: 10.13347/j.cnki.mkaq.20240526
GUO Qingbiao, XIE Yang, WANG Feng, et al. Simulation study on surface deformation characteristics of CO2 storage in abandoned goaf[J]. Safety in Coal Mines, 2024, 55(5): 1−10. DOI: 10.13347/j.cnki.mkaq.20240526
Citation: GUO Qingbiao, XIE Yang, WANG Feng, et al. Simulation study on surface deformation characteristics of CO2 storage in abandoned goaf[J]. Safety in Coal Mines, 2024, 55(5): 1−10. DOI: 10.13347/j.cnki.mkaq.20240526

废弃采空区封存CO2地表形变特征模拟研究

基金项目: 国家自然科学基金资助项目(52274164);安徽省优秀青年科学基金资助项目(2308085Y31);中国科协青年托举人才工程资助项目(2022QNRC001)
详细信息
    作者简介:

    郭庆彪(1990—),男,黑龙江哈尔滨人,副教授,博士研究生导师,博士,主要从事矿山开采沉陷与岩层控制方面的教学与研究工作。E-mail:qbguoaust@163.com

  • 中图分类号: TD325

Simulation study on surface deformation characteristics of CO2 storage in abandoned goaf

  • 摘要:

    为探究超临界CO2注入废弃采空区引起的地表形变特征,利用FLAC3D模拟研究了地表形变一般特征与演变过程,并从形变范围、形变量等5个方面探讨了孔隙率、CO2注入速率和封存深度对地表形变特征的影响。结果表明:CO2注入废弃采空区后引起的地表形变呈“倒碗”形隆起形态,并经历孕育阶段、活跃阶段和稳定阶段的演变过程;随着地表点远离采空区,其在孕育阶段和稳定阶段的位移量占比逐渐增大;地表变形范围随着CO2封存深度的增加明显减小,受孔隙率和CO2注入速率变化影响较小;地表位移量随着孔隙率和CO2封存深度的增大而逐渐减小,受CO2注入速率变化影响较小;地表形变持续时间与孔隙率和CO2注入速率正相关,与CO2封存深度负相关;地表点在孕育阶段和稳定阶段的位移量占比与所需时步数与孔隙率和封存深度正相关,与CO2注入速率负相关。

    Abstract:

    In order to explore the characteristics of surface deformation caused by supercritical CO2 injection into abandoned goaf, the general characteristics and evolution process of surface deformation were studied by FLAC3D simulation. The effects of porosity, CO2 injection rate and storage depth on surface deformation characteristics were discussed from five aspects, such as deformation range and deformation amount. The results show that the surface deformation caused by CO2 injection into the abandoned goaf is in the form of “inverted bowl” uplift, and experiences the evolution process of incubation stage, active stage and stable stage. As the surface point is far away from the goaf, the proportion of its displacement in the incubation stage and the stable stage gradually increases. The surface deformation range decreases significantly with the increase of CO2 storage depth, and is less affected by the change of porosity and CO2 injection rate. The surface displacement gradually decreases with the increase of porosity and CO2 storage depth, and is less affected by the change of CO2 injection rate. The duration of surface deformation is positively correlated with porosity and CO2 injection rate, and negatively correlated with CO2 storage depth. The proportion of the displacement of the surface point in the incubation stage and the stable stage is positively correlated with the number of time steps required and the porosity and storage depth, and negatively correlated with the CO2 injection rate.

  • 图  1   采空区封存CO2原理示意图

    Figure  1.   Principle diagram of CO2 storage in goaf

    图  2   超临界CO2相态分布图

    Figure  2.   Phase distribution of supercritical CO2

    图  3   数值模拟模型

    Figure  3.   Numerical simulation model

    图  4   地表形变的时步演变过程

    Figure  4.   Time-step evolution process of surface deformation

    图  5   各特征点形变时步演变过程

    Figure  5.   The time-step evolution process of each feature point deformation

    图  6   地表各特征点不同阶段时步占比

    Figure  6.   Time-step proportion of surface points at each stage

    图  7   地表最终位移量随地表点位置变化关系

    Figure  7.   The relationship between the final displacement of the surface point and the surface point position

    图  8   不同孔隙条件下地表位移演变

    Figure  8.   Displacement evolution of surface points under different porosity conditions

    图  9   不同孔隙条件下地表点在各阶段位移量占比

    Figure  9.   The proportion of surface point displacement at each stage under different porosity conditions

    图  10   不同孔隙率条件下地表形变持续时间

    Figure  10.   Duration time of surface deformation under different porosity conditions

    图  11   不同孔隙率条件下地表点在各阶段时步占比

    Figure  11.   The time-step proportion of surface points at each stage under different porosity conditions

    图  12   不同注入速率条件下地表位移演变

    Figure  12.   Displacement evolution of surface points underdifferent injection rates

    图  13   不同注入速率条件下地表点在各阶段位移量占比

    Figure  13.   The proportion of displacement of surface points at each stage under different injection rates

    图  14   不同注入速率条件下地表形变持续时间

    Figure  14.   Duration time of surface deformation under different injection rates

    图  15   不同注入速率条件下地表点各阶段时步占比

    Figure  15.   Time-step proportion of surface points at each stage under different injection rates

    图  16   不同封存深度地表位移演变

    Figure  16.   Displacement evolution of surface points at different storage depths

    图  17   不同封存深度条件下地表点在各阶段位移量占比

    Figure  17.   The proportion of displacement of surface points at each stage under different storage depth conditions

    图  18   不同封存深度条件下地表形变持续时间

    Figure  18.   Duration time of surface deformation under different storage depth conditions

    图  19   不同封存深度地表点各阶段时步占比

    Figure  19.   Time-step proportion of surface points at each stage under different storage depths

    表  1   数值模型中岩层力学参数

    Table  1   Mechanical parameters of rock in numerical model

    岩层性质 孔隙率 泊松比 抗拉强
    度/MPa
    弹性模
    量/GPa
    黏聚力/
    MPa
    内摩擦
    角/(°)
    密度/
    (kg·m−3
    底板砂质泥岩 0.30 0.24 1.14 1.74 0.14 31.24 2 252
    0.05 0.30 0.50 0.80 0.30 30.00 1 400
    顶板砂质泥岩 0.30 0.25 1.07 1.03 0.24 30.35 2 316
    泥质粉砂岩 0.32 0.25 1.00 1.20 0.03 25.00 2 205
    粉砂岩 0.32 0.26 1.08 1.34 0.03 34.24 2 205
    玄武岩 0.05 0.28 0.30 0.28 0.70 22.00 2 100
    下载: 导出CSV

    表  2   数值模拟研究实验方案

    Table  2   Numerical simulation research experiment scheme

    模拟方案 孔隙条件 注入速率/(m3·s−1 封存深度/m
    1 孔隙条件1 15 800
    2 孔隙条件2 15 800
    3 孔隙条件3 15 800
    4 孔隙条件2 10 800
    5 孔隙条件2 15 800
    6 孔隙条件2 20 800
    7 孔隙条件2 15 800
    8 孔隙条件2 15 1 000
    9 孔隙条件2 15 1 200
    下载: 导出CSV

    表  3   孔隙率参数设计

    Table  3   Design of porosity parameters

    覆岩类别 孔隙率
    条件1 条件2 条件3
    玄武岩 0.075 0.075 0.075
    粉砂岩 0.28 0.30 0.35
    泥质粉砂岩 0.20 0.25 0.30
    砂质泥岩 0.15 0.20 0.25
    0.20 0.25 0.30
    砂质泥岩 0.15 0.2 0.25
    下载: 导出CSV
  • [1] 杨术刚,李兴春,蔡明玉,等. 国外CO2地质封存管理制度、标准体系分析及其启示[J]. 天然气工业,2023,43(12):130−137.

    YANG Shugang, LI Xingchun, CAI Mingyu. Overseas management systems and standards for CO2 geological storage and their implications for China[J]. Natural Gas Industry, 2023, 43(12): 130−137.

    [2] 王晓琳,姬长生,张振芳,等. 基于碳足迹的煤炭矿区碳排放源构成分析[J]. 煤矿安全,2012,43(4):169−172.

    WANG Xiaolin, JI Changsheng, ZHANG Zhenfang, et al. Analysis on the composition of carbon emission sources in coal mining areas based on carbon footprint[J]. Safety in Coal Mines, 2012, 43(4): 169−172.

    [3] 袁亮,姜耀东,王凯,等. 我国关闭/废弃矿井资源精准开发利用的科学思考[J]. 煤炭学报,2018,43(1):14−20.

    YUAN Liang, JIANG Yaodong, WANG Kai, et al. Precision exploitation and utilization of closed/abandoned mine resources in China[J]. Journal of China Coal Society, 2018, 43(1): 14−20.

    [4] 李树刚,张静非,林海飞,等. 采空区碳封存条件下CO2-水界面特性及溶解传质规律[J]. 煤炭学报,2024,49(1):513−527.

    LI Shugang, ZHANG Jingfei, LIN Haifei, et al. Research on the characteristics of CO2-water interface and the law of dissolution and mass transfer under the condition of carbon sequestration in goaf[J]. Journal of China Coal Society, 2024, 49(1): 513−527.

    [5] 奚弦,桑树勋,刘世奇. 煤矿区固废矿化固定封存CO2与减污降碳协同处置利用的研究进展[J/OL]. 煤炭学报,2024:1-16. [2024-04-08]. https://doi.org/10.13225/j.cnki.jccs.2023.1075.

    XI Xian, SANG Shuxun, LIU Shiqi. Progress in research of CO2 fixation and sequestration by coal mine solid waste mineralization and codisposal of pollution and carbon reduction[J/OL]. Journal of China Coal Society, 2024: 1-16. [2024-04-08]. https://doi.org/10.13225/j.cnki.jccs.2023.1075.

    [6] 朱磊,刘成勇,古文哲,等. 双碳目标下“煤基固废CO2”协同充填封存技术构想[J]. 矿业安全与环保,2023,50(6):16−21.

    ZHU Lei, LIU Chengyong, GU Wenzhe, et al. Conception of “coal-based solid waste-CO2” cooperative filling and storage technology under the target of carbon peak and carbon neutral[J]. Mining Safety and Environmental Protection, 2023, 50(6): 16−21.

    [7] 丁洋,汤远卓,李树刚,等. 老采空区CO2封存井位部署方案数值模拟研究[J/OL]. 煤炭科学技术,2024:1-14. [2024-04-08]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231204.1058.002.html.

    DING Yang, TANG Yuanzhuo, LI Shugang, et al. Numerical simulation of well location deployment scheme for CO2 sequestration in old goaf[J/OL]. Coal Science and Technology, 2024: 1-14. [2024-04-08]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231204.1058.002.html.

    [8] 钱静,易高峰,周琦忠,等. 三河尖关闭煤矿煤层CO2封存潜力研究[J/OL]. 煤炭科学技术,2024:1-13. [2024-04-08]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240226.1747.002.html.

    QIAN Jing, YI Gaofeng, ZHOU Qizhong, et al. CO2 storage potential of coal seam in Sanhejian closed coal mine[J/OL]. Coal Science and Technology, 2024: 1-13. [2024-04-08]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240226.1747.002.html.

    [9]

    LI Huaizhan, HUANG Jianyong, TANG Lu, et al. New model of negative carbon utilization in coal mine goafs and its feasibility and prospects for application[J]. Journal of Cleaner Production, 2023, 420(sep. 25): 138368.

    [10] 刘操,闫江伟,赵春辉,等. 煤中超临界CO2解吸滞后机理及其对地质封存启示[J/OL]. 煤炭学报,2024: 1-16. [2024-03-18]. https://doi.org/10.13225/j.cnki.jccs.2023.0738.

    LIU Cao, YAN Jiangwei, ZHAO Chunhui, et al. The hysteresis mechanism of supercritical CO2 desorption in coal and its implication for carbon geo-sequestration[J/OL]. Journal of China Coal Society, 2024: 1-16. [2024-03-18]. https://doi.org/10.13225/j.cnki.jccs.2023.0738.

    [11] 方辉煌,桑树勋,张平松,等. 淮南煤田各类型地质体CCS源汇潜力评估及其匹配性研究[J/OL]. 煤炭学报,2024: 1-16. [2024-04-08]. https://doi.org/10.13225/j.cnki.jccs.2023.1043.

    FANG Huihuang, SANG Shuxun, ZHANG Pingsong, et al. Evaluation and matching of CCS source and sink potential of various geologic bodies in Huainan Coalfield[J/OL]. Journal of China Coal Society, 2024: 1-16. [2024-04-08]. https://doi.org/10.13225/j.cnki.jccs.2023.1043.

    [12] 陈丁. 油田注采区地表形变时序InSAR监测及储层参数反演[D]. 徐州,中国矿业大学,2022.
    [13] 王远坚,姜岳,MISA R,等. 基于PS-InSAR监测的石油开采地表下沉模型反演[J]. 中国矿业,2021,30(4):82−88. doi: 10.12075/j.issn.1004-4051.2021.04.022

    WANG Yuanjian, JIANG Yue, MISA R, et al. Surfacesubsidence inversion model with PS-INSAR monitoring in petroleum exploitation[J]. International Journal of Mining Science and Technology, 2021, 30(4): 82−88. doi: 10.12075/j.issn.1004-4051.2021.04.022

    [14] 黄晓东. 超临界CO2盐水层地下埋存盖层封闭性研究[D]. 西安:西安石油大学,2024.
    [15] 刘佳佳, 聂子硕, 于宝种, 等. 超临界二氧化碳对煤体増透的作用机理及影响因素分析[J/OL]. 煤炭科学技术, 2024: 1-13. [2024-04-19]. https://doi.org/10.13199/j.cnki.cst.2022-2259.

    LIU Jiajia, NIE Zishuo, YU Baozhong, et al. Analysis of the mechanism and influencing factors of supercritical carbon dioxide on coal permeability enhancement[J/OL]. Coal Science and Technology, 2024: 1-13.[2024-04-19]. https://doi.org/10.13199/j.cnki.cst.2022-2259.

    [16] 刘小燕. 二氧化碳深含水层隔离的二相渗流模拟与岩石物理学研究[D]. 合肥:中国科学技术大学,2007.
    [17] 刘廷方,雷杰,黎杰,等. 液态CO2溶浸-酸化煤岩有机基团演化实验研究[J]. 煤矿安全,2023,54(11):69−76.

    LIU Tinfang, LEI Jie, LI Jie, et al. Experimental study on evolution of organic groups in coal rock by liquid CO2 leaching and acidification[J]. Safety in Coal Mines, 2023, 54(11): 69−76.

    [18] 王梦露,沈永星,周动,等. 不同变质程度煤的吸附瓦斯动力学特性实验研究[J]. 煤矿安全,2024,55(1):34−41.

    WANG Menglu, SHEN Yongxing, ZHOU Dong, et al. Experimental study on kinetic characteristics of gas adsorption of coal with different degrees of metamorphism[J]. Safety in Coal Mines, 2024, 55(1): 34−41.

    [19]

    XIE H, ZHAO J W, ZHOU H W, et al. Secondary utilizations and perspectives of mined underground space[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2020, 96(Feb.): 103129.

    [20] 左文哲,谯永刚,华杰,等. 煤与瓦斯突出冲击气流数值模拟研究[J]. 煤矿安全,2024,55(2):55−61.

    ZUO Wenzhe, QIAO Yonggang, HUA Jie, et al. Numerical simulation study on coal and gas outburst impact airflow[J]. Safety in Coal Mines, 2024, 55(2): 55−61.

    [21] 葛俊岭,王彦敏,刘涛. 基于UDF的煤层注水渗流演化规律的数值模拟研究[J]. 煤矿安全,2024,55(1):78−85.

    GE Junling, WANG Yanmin, LIU Tao. Numerical simulation study on seepage evolution law of coal seam water injection based on UDF[J]. Safety in Coal Mines, 2024, 55(1): 78−85.

  • 期刊类型引用(7)

    1. 崔忠麒,徐娅煊,苏皓. 基于Stacking-SHAP的煤自燃倾向性影响因素研究. 煤炭技术. 2025(01): 150-155 . 百度学术
    2. 孙吉平. 基于SF_6质量浓度变化特征的煤矿火灾状态识别分析. 山西煤炭. 2025(01): 42-49 . 百度学术
    3. 曹富荣,吴学松,李军,付天予,刘佳伟,李志辉,杨小彬. 基于机器学习的多气体指标煤自燃温度预测. 煤矿安全. 2024(04): 106-113 . 本站查看
    4. 樊永勇,王新瑞,张春雷. 急倾斜特厚煤层分段采空区低温氮气防灭火技术研究与实践. 能源与环保. 2024(11): 254-262 . 百度学术
    5. 武泽伟,汪伟,祁云,梁然. 采空区遗煤自燃影响因素分析及风险评价. 山西大同大学学报(自然科学版). 2023(04): 116-122 . 百度学术
    6. 孔彪,朱思想,胡相明,杨涛,赵旭帅,斐达特,万姝含. 基于改进鲸鱼算法优化BP神经网络的煤自燃预测研究. 矿业安全与环保. 2023(05): 30-36 . 百度学术
    7. 陈鹏燕,周春山,程熙宇,田雅琪. 全物理交联Al~(3+)-CMC/MMT-PAM双网络凝胶的制备及性能. 矿业研究与开发. 2023(11): 143-149 . 百度学术

    其他类型引用(2)

图(19)  /  表(3)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  25
  • PDF下载量:  32
  • 被引次数: 9
出版历程
  • 收稿日期:  2024-04-11
  • 修回日期:  2024-04-21
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回