• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

空气湿度对煤自燃特性及氧化动力学参数的影响研究

王树明

王树明. 空气湿度对煤自燃特性及氧化动力学参数的影响研究[J]. 煤矿安全,2024,55(4):98−105. DOI: 10.13347/j.cnki.mkaq.20231640
引用本文: 王树明. 空气湿度对煤自燃特性及氧化动力学参数的影响研究[J]. 煤矿安全,2024,55(4):98−105. DOI: 10.13347/j.cnki.mkaq.20231640
WANG Shuming. Research on the influence of air humidity on coal spontaneous combustion characteristics and oxidation kinetics parameters[J]. Safety in Coal Mines, 2024, 55(4): 98−105. DOI: 10.13347/j.cnki.mkaq.20231640
Citation: WANG Shuming. Research on the influence of air humidity on coal spontaneous combustion characteristics and oxidation kinetics parameters[J]. Safety in Coal Mines, 2024, 55(4): 98−105. DOI: 10.13347/j.cnki.mkaq.20231640

空气湿度对煤自燃特性及氧化动力学参数的影响研究

详细信息
    作者简介:

    王树明(1986—),男,陕西安康人,高级工程师,硕士,主要从事矿山安全方面的技术与管理工作。E-mail:517095195@qq.com

  • 中图分类号: TD75+2.2

Research on the influence of air humidity on coal spontaneous combustion characteristics and oxidation kinetics parameters

  • 摘要:

    空气湿度对矿井煤自燃过程具有重要影响,为了研究空气湿度对煤自然氧化特性及氧化动力学参数的影响特征,选取文家坡煤矿4105综放工作面煤样开展程序升温实验研究,分析不同空气湿度条件下煤样氧化自燃特性,并构建公式根据耗氧速率计算不同氧化阶段的表观活化能及指前因子。结果表明:不同空气湿度条件下,CO气体和耗氧速率随温度升高均呈现出指数型增长趋势,C2H4气体是煤高温热解的产物,在90 °C以后才开始出现,文家坡煤矿煤样的临界温度为60~80 °C,干裂温度为100~120 °C;通过临界温度前后煤氧化动力学参数计算,煤样的表观活化能随着空气湿度的增大逐渐减小,当空气湿度超过60%以后,表观活化能又逐渐增大,且指前因子表现出类似的规律,说明煤自燃过程存在临界湿度,该湿度对煤自燃起到一定的促进作用,在该环境下煤样更加容易自燃。

    Abstract:

    Air humidity has an important impact on the spontaneous combustion process of coal in mines. In order to study the influence characteristics of air humidity on the natural oxidation characteristics and oxidation kinetics parameters of coal, a programmed heating experiment was conducted on coal samples from 4105 fully mechanized caving face of Wenjiapo Coal Mine. The oxidation spontaneous combustion characteristics of coal samples were analyzed under different air humidity conditions, and a formula was constructed to calculate the apparent activation energy and pre-exponential factor of different oxidation stages based on the oxygen consumption rate. The research results indicate that under different air humidity conditions, CO gas and oxygen consumption rate both exhibit an exponential growth trend with increasing temperature. C2H4 gas is a product of coal high-temperature pyrolysis and only appears after 90 °C. The critical temperature of coal samples in Wenjiapo Coal Mine is 60-80 °C, and the dry-cracking temperature is 100-120 °C. By calculating the coal oxidation kinetics parameters before and after the critical temperature, the apparent activation energy of the coal sample gradually decreases with the increase of air humidity. When the air humidity exceeds 60%, the apparent activation energy gradually increases, and the pre-exponential factor shows a similar pattern, indicating that the coal spontaneous combustion process exists in the critical humidity, which plays a certain promoting role in coal spontaneous combustion, and the coal sample is more prone to spontaneous combustion in this environment.

  • 图  1   煤自燃程序升温试验装置

    Figure  1.   Programmed temperature heating test device for coal spontaneous combustion

    图  2   不同空气湿度条件下CO体积分数随温度变化

    Figure  2.   CO concentration changes with temperature under different air humidity conditions

    图  3   不同空气湿度条件下C2H4体积分数随温度变化

    Figure  3.   C2H4 concentration changes with temperature under different air humidity conditions

    图  4   不同空气湿度条件下耗氧速率随温度变化

    Figure  4.   Oxygen consumption rate changes with temperature under different air humidity conditions

    图  5   不同空气湿度条件下煤样ln($ v_{\rm{O}_2}^0/c_{\rm{O}_2}^0) $与1/T关系曲线

    Figure  5.   Relationship curves between ln($ \mathit{v}_{\rm{O}_2}^0/\mathit{c}_{\rm{O}_2}^0) $ and 1/T of coal samples at different air humidity conditions

    表  1   煤质分析

    Table  1   Coal quality analysis

    Mad/% Aad/% Vad/% FCad/% C含量/% H含量/% O含量/% N含量/% S含量/% H/C
    4.41 14.07 33.51 48.01 78.84 4.75 14.2 1.37 0.84 0.060
      注:Mad为水分;Aad为灰分;Vad为挥发分。
    下载: 导出CSV

    表  2   实验条件

    Table  2   Experimental conditions

    煤样
    编号
    湿度/
    %
    初始温度/
    °C
    煤样质量/
    g
    空气流量/
    (mL·min−1
    升温速度/
    (°C·min−1
    1# 0 30 1 000 120 0.3
    2# 20 30 1 000 120 0.3
    3# 40 30 1 000 120 0.3
    4# 60 30 1 000 120 0.3
    5# 80 30 1 000 120 0.3
    6# 100 30 1 000 120 0.3
    下载: 导出CSV

    表  3   不同煤样的动力学参数

    Table  3   Dynamic parameters of different coal samples

    空气
    湿度/%
    临界
    温度/oC
    E1/
    (kJ·mol−1)
    E2/
    (kJ·mol−1)
    A1 A2
    100 80 49.5406 57.1978 2154.470 00 12789.760
    80 70 34.2811 61.8503 38.0766 0 25326.330
    60 60 32.8719 42.9110 14.71107 4186.415
    40 70 37.6483 66.0988 61.95448 57342.650
    20 80 50.8684 68.9946 263.9079 84761.780
    0 80 45.8758 72.0017 795.1255 169973.900
      注:E1、A1为临界温度前的表观活化能及指前因子;E2A2为临界温度后的表观活化能及指前因子。
    下载: 导出CSV
  • [1]

    XUE D, HU X, CHENG W , et al. Fire prevention and control using gel-stabilization foam to inhibit spontaneous combustion of coal: Characteristics and engineering applications[J]. Fuel, 2020, 264: 106-118.

    [2] 袁亮,张通,赵毅鑫,等. 煤与共伴生资源精准协调开采—以鄂尔多斯盆地煤与伴生特种稀有金属精准协调开采为例[J]. 中国矿业大学学报,2017,46(3):449−459.

    YUAN Liang, ZHANG Tong, ZHAO Yixin, et al. Precise coordinated mining of coal and associated resources: A case of environmental coordinated mining of coal and associated rare metal in Ordos basin[J]. Journal of China University of Mining & Technology, 2017, 46(3): 449−459.

    [3] 丁徐琴,张雷林. 氧气体积分数对煤自燃特性影响的实验研究[J]. 煤矿安全,2023,54(7):156−162.

    DING Xuqin, ZHANG Leilin. Experimental study on effect of oxygen volume fraction on spontaneous combustion characteristics of coal[J]. Safety in Coal Mines, 2023, 54(7): 156−162.

    [4]

    WANG K, HU L, DENG J, et al. Multiscale thermal behavioral characterization of spontaneous combustion of pre-oxidized coal with different air exposure time[J]. Energy, 2023, 262: 125397. doi: 10.1016/j.energy.2022.125397

    [5] 宁振凯,高函,赵炬. 岩浆侵入对煤自燃特性和动力学特征的影响研究[J]. 煤矿安全,2023,54(9):66−72.

    NING Zhenkai, GAO Han, ZHAO Ju. Study on the influence of magmatic intrusion on coal spontaneous combustion and kinetics characteristics[J]. Safety in Coal Mines, 2023, 54(9): 66−72.

    [6]

    MA T, ZHAI X, XIAO Y, et al. Study on the influence of key active groups on gas products in spontaneous combustion of coal[J]. Fuel, 2023, 344: 128020. doi: 10.1016/j.fuel.2023.128020

    [7] 秦波涛,蒋文婕,史全林,等. 矿井粉煤灰基防灭火技术研究进展[J]. 煤炭科学技术,2023,51(1):329−342.

    QIN Botao, JIANG Wenjie, SHI Quanlin, et al. Research progress on fly ash foundation technology to prevent and control spontaneous combustion of coal in mines[J]. Coal Science and Technology, 2023, 51(1): 329−342.

    [8] 王德明,辛海会,戚绪尧,等. 煤自燃中的各种基元反应及相互关系:煤氧化动力学理论及应用[J]. 煤炭学报,2014,39(8):1667−1674.

    WANG Deming, XIN Haihui, QI Xuyao, et al. Mechanism and relationships of elementary reactions in spontaneous combustion of coal: The coal oxidation kinetics theory and application[J]. Journal of China Coal Society, 2014, 39(8): 1667−1674.

    [9] 易欣,张敏,邓军. 煤自燃指标体系分析与优选实验研究[J]. 煤矿安全,2023,54(1):85−93.

    YI Xin, ZHANG Min, DENG Jun. Analysis and optimization of coal spontaneous combustion index system[J]. Safety in Coal Mines, 2023, 54(1): 85−93.

    [10] 王德明,张伟,王和堂,等. 煤矿热动力重大灾害的不确定性风险特性研究[J]. 采矿与安全工程学报,2023,40(4):826−837.

    WANG Deming, ZHANG Wei, WANG Hetang, et al. Uncertain risk characteristics of major thermodynamic disasters in underground coal mines[J]. Journal of Mining and Safety Engineering, 2023, 40(4): 826−837.

    [11]

    LEI C, DENG J, CAO K, et al. A comparison of random forest and support vector machine approaches to predict coal spontaneous combustion in gob[J]. Fuel, 2019, 239: 297−311. doi: 10.1016/j.fuel.2018.11.006

    [12]

    LI H, CHEN X, SHU C, et al. Effects of oxygen concentration on the macroscopic characteristic indexes of high-temperature oxidation of coal[J]. Journal of The Energy Institute, 2019, 92(3): 554−566. doi: 10.1016/j.joei.2018.04.003

    [13] 张秋利,李凤英,惠相荣,等. 低变质煤热解气体产物的析出特性[J]. 煤炭转化,2019,42(4):32−39.

    ZHANG Qiuli, LI Fengying, HUI Xiangrong, et al. Evolution characteristics of gas products in pyrolysis process of low metamorphic coal[J]. Coal Conversion, 2019, 42(4): 32−39.

    [14] 王小华,赵洪宇,宋强,等. 不同载气气氛下煤样热解特性及其动力学参数研究[J]. 煤炭工程,2019,51(1):115−119.

    WANG Xiaohua, ZHAO Hongyu, SONG Qiang, et al. Study on pyrolysis characteristics and kinetic parameters of coal samples in different carrier gases[J]. Coal Engineering, 2019, 51(1): 115−119.

    [15] 刘宝,穆坤,叶飞,等. 基于相关向量机的煤自燃预测方法[J]. 工矿自动化,2020,46(9):104−108.

    LIU Bao, MU Kun, YE Fei, et al. Prediction method of coal spontaneous combustion based on relevance vector machine[J]. Industry and Mine Automation, 2020, 46(9): 104−108.

    [16] 金永飞,郭军,文虎,等. 煤自燃高温贫氧氧化燃烧特性参数的实验研究[J]. 煤炭学报,2015,40(3):596−602.

    JIN Yongfei, GUO Jun, WEN Hu, et al. Experimental study on the high temperature lean oxygen oxidation combustion characteristic parameters of coal spontaneous combustion[J]. Journal of China Coal Society, 2015, 40(3): 596−602.

    [17] 朱建国,戴广龙,唐明云,等. 水浸长焰煤自燃预测预报指标气体试验研究[J]. 煤炭科学技术,2020,48(5):89−94.

    ZHU Jianguo, DAI Guanglong, TANG Mingyun, et al. Experimental study on spontaneous combustion prediction index gas of water immersed long flame coal[J]. Coal Science and Technology, 2020, 48(5): 89−94.

    [18] 易欣,张敏,邓寅,等. 淮南矿区煤自燃指标气体及特征参数[J]. 西安科技大学学报,2023,43(3):457−465.

    YI Xin, ZHANG Min, DENG Yin, et al. Spontaneous combustion indicator gases and characteristic parameters of coal in Huainan mining area[J]. Journal of Xi’an University of Science and Technology, 2023, 43(3): 457−465.

    [19]

    JIA X, WU J, LIAN C, et al. Assessment of coal spontaneous combustion index gas under different oxygen concentration environment: an experimental study[J]. Environmental Science and Pollution Research, 2022, 29(58): 87257−87267. doi: 10.1007/s11356-022-21920-5

    [20]

    WANG K, HE Y, FAN H, et al. Study of the coal secondary spontaneous combustion behavior under different pre-heating oxygen concentrations[J]. Journal of Thermal Analysis and Calorimetry, 2021, 146(2): 681−688. doi: 10.1007/s10973-020-10036-y

    [21] 王凯,韩涛,和运中. 风量影响下的煤自燃定量预测预报指标试验研究[J]. 西安科技大学学报,2022,42(1):16−21.

    WANG Kai, HAN Tao, HE Yunzhong. Experimental study on quantitative prediction indexes of coal spontaneous combustion based on air supply[J]. Journal of Xi’an University of Science and Technology, 2022, 42(1): 16−21.

    [22] 迟克勇,范耀庭,王晨,等. 空气湿度对煤自燃特征参数及热效应的影响研究[J]. 矿业安全与环保,2023,50(3):74−80.

    CHI Keyong, FAN Yaoting, WANG Chen, et al. Effect of air humidity on the characteristic parameters and thermal effect of coal spontaneous combustion[J]. Mining Safety & Environmental Protection, 2023, 50(3): 74−80.

    [23] 张辛亥,李青蔚,张长山. 空气湿度对煤自燃特性影响的试验研究[J]. 安全与环境学报,2017,17(1):147−150.

    ZHANG Xinhai, LI Qingwei, ZHANG Changshan. Air humidity influential characteristic features of the coal spontaneous combustion[J]. Journal of Safety and Environment, 2017, 17(1): 147−150.

    [24] 肖旸,李青蔚,鲁军辉. 空气相对湿度对煤自燃特性的影响研究[J]. 中国安全科学学报,2015,25(3):34−40.

    XIAO Yang, LI Qingwei, LU Junhui. Effects of air relative humidity on coal spontaneous combustion properties[J]. China Safety Science Journal, 2015, 25(3): 34−40.

    [25] 徐精彩. 煤自燃危险区域判定理论[M]. 北京:煤炭工业出版社,2001.
    [26] 邓军,张敏,雷昌奎,等. 不同变质程度煤自燃特性及低温氧化动力学分析[J]. 安全与环境学报,2021,21(1):94−100.

    DENG Jun, ZHANG Min, LEI Changkui, et al. Kinetic analysis of the low temperature spontaneous oxidation combustion of the coal seams due to the different metamorphism extents[J]. Journal of Safety and Environment, 2021, 21(1): 94−100.

  • 期刊类型引用(7)

    1. 崔忠麒,徐娅煊,苏皓. 基于Stacking-SHAP的煤自燃倾向性影响因素研究. 煤炭技术. 2025(01): 150-155 . 百度学术
    2. 孙吉平. 基于SF_6质量浓度变化特征的煤矿火灾状态识别分析. 山西煤炭. 2025(01): 42-49 . 百度学术
    3. 曹富荣,吴学松,李军,付天予,刘佳伟,李志辉,杨小彬. 基于机器学习的多气体指标煤自燃温度预测. 煤矿安全. 2024(04): 106-113 . 本站查看
    4. 樊永勇,王新瑞,张春雷. 急倾斜特厚煤层分段采空区低温氮气防灭火技术研究与实践. 能源与环保. 2024(11): 254-262 . 百度学术
    5. 武泽伟,汪伟,祁云,梁然. 采空区遗煤自燃影响因素分析及风险评价. 山西大同大学学报(自然科学版). 2023(04): 116-122 . 百度学术
    6. 孔彪,朱思想,胡相明,杨涛,赵旭帅,斐达特,万姝含. 基于改进鲸鱼算法优化BP神经网络的煤自燃预测研究. 矿业安全与环保. 2023(05): 30-36 . 百度学术
    7. 陈鹏燕,周春山,程熙宇,田雅琪. 全物理交联Al~(3+)-CMC/MMT-PAM双网络凝胶的制备及性能. 矿业研究与开发. 2023(11): 143-149 . 百度学术

    其他类型引用(2)

图(5)  /  表(3)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  10
  • PDF下载量:  8
  • 被引次数: 9
出版历程
  • 收稿日期:  2023-11-12
  • 修回日期:  2023-12-07
  • 刊出日期:  2024-04-19

目录

    /

    返回文章
    返回