Numerical simulation study on development law of mining-induced overburden separation layer in deep and thick coal seam in western mining area
-
摘要:
为了丰富离层发育规律的研究方法,以石拉乌素矿221上08工作面为对象,通过分布式光纤(BOTDR)及定点光纤对离层位置进行综合确定,结合颗粒流PFC2D数值模拟,对大采高、大采深条件下采动覆岩离层发育规律进行研究。结果表明:随着工作面推进,离层空间在关键层底部自下而上向主关键层底部发育,离层发育埋深在440、396、376、331、321、296 m附近,层位止于粗砂岩主关键层底部;覆岩运移主要经历下位关键层沉降、上位亚关键层快速沉降、向粗砂岩主关键层底部发展、主关键层运移阶段;离层层位与工作面推进距离呈正比,且离层发育主要分为孕育(Ⅰ)-加速扩容(Ⅱ)-压密阶段(Ⅲ)3个阶段。
Abstract:To enrich the research methods for studying the development law of bed separation, this paper takes the upper 08 working face of 221 in Shilawusu Mine as the research object, and comprehensively determines the location of bed separation through distributed optical fiber (BOTDR) and fixed-point optical fiber. The particle flow code (PFC2D) is used to study the pattern of the separation layer development under the conditions of large mining height and large mining depth. The results show that, as the working face advances away from the cutting hole, the separated layer develops intermittently from the bottom to the bottom of the key layer, and the depth of separation layer development is around 440 m, 396 m, 376 m, 331 m, 321 m and 296 m, and the layer stops at the bottom of the main key layer of coarse sandstone. The overburden transport mainly goes through the stages of subsidence of the lower key layer, rapid subsidence of the upper sub-key layer, development of overburden movement towards the bottom of the main key layer of coarse sandstone, and transport of the main key layer. The separated layer position is proportional to the advancement distance of the working face, and the development of the separated layer is mainly divided into three stages, which are gestation (Ⅰ)-accelerated expansion (Ⅱ)- compression stage (Ⅲ).
-
-
表 1 模型地层细观参数表
Table 1 Mesoscopic parameters table of model strata
地层 分层颜色 编号 岩性 分层厚度/
m弹性模量/
GPa刚度比 法相黏聚力/
MPa切向黏聚力/
MPa密度/
(kg·m-3)内摩擦角/
(°)志丹群 27 细砂岩 39.90 8.22 1.20 30.80 16.78 2 600 37 26 中砂岩 38.04 5.57 1.02 34.61 18.31 2 630 32 25 粗砂岩 42.76 5.00 1.05 35.45 18.63 2 550 33 24 细砂岩 14.31 7.52 1.02 31.79 17.18 2 580 38 23 粗砂岩 35.48 4.69 1.03 35.92 18.81 2 660 32 22 中砂岩 14.10 10.71 1.15 27.35 15.33 2 620 36 21 粗砂岩 13.61 6.68 1.03 33.00 17.67 2 590 32 安定组 20 泥岩 11.71 13.34 1.00 23.87 13.80 2 620 33 19 粗砂岩 10.69 6.66 1.03 33.03 17.68 2 610 32 18 泥质砂岩 8.09 10.03 1.09 28.28 15.72 2 610 34 17 泥岩 24.00 24.01 1.09 11.44 7.59 2 690 34 16 粗砂岩 17.14 7.56 1.02 31.74 17.16 2 590 34 15 泥岩 14.86 24.01 1.09 11.44 7.59 2 690 34 直罗组 14 粉砂岩 29.60 17.61 1.03 18.57 11.31 2 740 25 13 泥岩 8.73 17.87 1.00 18.26 11.16 2 700 33 12 粉砂岩 16.23 27.88 1.03 7.61 5.33 2 660 25 11 细砂岩 10.42 17.77 1.04 18.37 11.22 2 600 33 10 粉砂岩 25.08 16.25 1.03 20.21 12.11 2 660 25 9 细砂岩 10.15 16.43 1.03 19.99 12.00 2 600 33 8 泥岩 15.10 23.04 1.07 12.45 8.15 2 700 31 延安组 7 中砂岩 16.30 21.10 1.06 14.55 9.28 2 590 36 6 泥岩 6.90 32.88 1.30 3.19 2.41 2 700 36 5 中砂岩 9.30 27.55 1.16 7.91 5.52 2 590 37 4 粗砂岩 11.40 18.36 1.03 17.68 10.88 2 610 32 3 中砂岩 9.30 11.11 1.02 26.80 15.09 2 590 34 2 粉砂岩 11.10 25.29 1.12 10.12 6.83 2 780 36 2-2煤 9.00 5.10 2.35 6.30 2.90 586 29 1 粉砂岩 30.70 19.33 1.03 16.55 10.31 2 740 32 -
[1] 973计划(2013cb227900)“西部煤炭高强度开采下地质灾害防治与环境保护基础研究”项目组. 西部煤炭高强度开采下地质灾害防治理论与方法研究进展[J]. 煤炭学报,2017,42(2):267−275. Research group of national key basic research program of China(2013cb227900) (Basic study on geological hazard prevention and environmental protection in high intensity mining of western coal area). Theory and method research of geological disaster prevention on high-intensity coal exloitation in the west areas[J]. Journal of China Coal Society, 2017, 42(2): 267−275.
[2] 孙利辉. 西部弱胶结地层大采高工作面覆岩结构演化与矿压活动规律研究[J]. 岩石力学与工程学报,2017,36(7):1820. SUN Lihui. Structural evolution and rock pressure activity regularity of weakly cemented strata of the large mining height work face in western China[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1820.
[3] 李全生,李晓斌,许家林,等. 岩层采动裂隙演化规律与生态治理技术研究进展[J]. 煤炭科学技术,2022,50(1):28−47. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201002 LI Quansheng, LI Xiaobin, XU Jialin, et al. Research advances in mining fractures evolution law of rock strata and ecological treatment technology[J]. Coal Science and Technology, 2022, 50(1): 28−47. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201002
[4] 马荷雯. 我国煤矿(区)离层水害特征分析[J]. 煤矿安全,2023,54(5):106−112. MA Hewen. Characteristics analysis of bed separation water inrush hazard of coal mine areas in China[J]. Safety in Coal Mines, 2023, 54(5): 106−112.
[5] 张培森,闫奋前,孙亚楠,等. 特厚煤层开采覆岩离层水形成及涌突风险[J]. 煤矿安全,2020,51(7):36-41. ZHANG Peisen, YAN Fenqian, SUN Yanan, et al. Water formation and inrush risk of overburden strata for extra-thick coal seam mining[J]. Safety in Coal Mines, 2020, 51(7): 36-41.
[6] 崔希民,高宇,李培现,等. 采动覆岩与地表下沉关系模型及离层量估算方法[J]. 煤炭学报,2023,48(1):74-82. CUI Ximin, GAO Yu, LI Peixian, et al. Relationships between mining overburden rock and surface subsidence and its application to estimate bed separation[J]. Journal of China Coal Society, 2023, 48(1): 74-82.
[7] 曹始友,董方营,成文举,等. 并行电法探测煤层顶板“两带”发育高度[J]. 矿业安全与环保,2022,49(3):94−100. CAO Shiyou, DONG Fangying, CHENG Wenju, et al. Study on the development height of “two zones” of coal seam roof based on parallel electric method[J]. Mining Safety & Environmental Protection, 2022, 49(3): 94−100.
[8] 王兆丰,李青松,杨利平,等. 下石节矿综放工作面上覆岩层位移冒落带高度确定[J]. 煤矿安全,2007,38(5):13−15. doi: 10.3969/j.issn.1003-496X.2007.05.004 WANG Zhaofeng, LI Qingsong, YANG Liping, et al. Determination of caving zone height of overlying strata displacement in full-mechanized caving Face of Xiashijie Mine[J]. Safety in Coal Mines, 2007, 38(5): 13−15. doi: 10.3969/j.issn.1003-496X.2007.05.004
[9] 孟祥军,林海飞,王超,等. 巨厚煤层综放工作面覆岩“三带”演化特征[J]. 煤矿安全,2021,52(6):85−90. MENG Xiangjun, LIN Haifei, WANG Chao, et al. Evolution characteristics of overburden three zones in fuly-mechanized caving face in huge thick coal seam[J]. Safety in Coal Mines, 2021, 52(6): 85−90.
[10] 贺化平. 采空区上覆岩层“三带”划分理论计算与数值模拟结果对比[J]. 煤炭技术,2019,38(6):51−54. HE Huaping. Comparison of results from numerical simulation and formula calculation in “three zones” division of overlying strata in gob[J]. Coal Technology, 2019, 38(6): 51−54.
[11] 高延法. 岩移“四带”模型与动态位移反分析[J]. 煤炭学报,1996,21(1):51−56. doi: 10.3321/j.issn:0253-9993.1996.01.010 GAO Yanfa. “Four-zone” model of rockmass movement and back analysis of dynamic displacement[J]. Journal of China Coal Society, 1996, 21(1): 51−56. doi: 10.3321/j.issn:0253-9993.1996.01.010
[12] YUAN Changfeng, YUAN Zijin, WANG Yingting, et al. Analysis of the diffusion process of mining overburden separation strata based on the digital speckle correlation coefficient field[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 19(7): 13−21.
[13] 徐建国,赵东良,贺江辉. 白垩系巨厚砂岩下覆岩离层水涌突机理研究[J]. 煤矿安全,2020,51(2):58−63. XU Jianguo, ZHAO Donglian, HE Jianghui. Mechanism of water innush in overlying strata of cretaceous thick sandstone[J]. Safety in Coal Mines, 2020, 51(2): 58−63.
[14] 徐乐年,许艳云,赵莉莉,等. 钻井离层监测系统[J]. 煤矿安全,2018,49(10):128−130. XU Lenian, XU Yanyun, ZHAO Lili, et al. Bed-separation monitoring system of drilling[J]. Safety in Coal Mines, 2018, 49(10): 128−130.
[15] 冯康武. 突出煤相似材料单轴压缩的PFC2D模型细观参数标定研究[J]. 煤矿安全,2020,51(4):5−9. FENG Kangwu. Research on calibration of micro parameters of PFC model in uniaxial compression coal similar materials[J]. Safety in Coal Mines, 2020, 51(4): 5−9.
[16] 王朝阳,林鹏,许振浩,等. 横观各向同性岩体平直-光滑节理双模型细观参数联合标定方法[J]. 中南大学学报(自然科学版),2022,53(6):2211−2223. doi: 10.11817/j.issn.1672-7207.2022.06.022 WANG Zhaoyang, LIN Peng, XU Zhenhao, et al. A transversely isotropic rocks integrated microparameter calibration method for flat joint model and smooth joint model[J]. Journal of Central South University:Science and Technology, 2022, 53(6): 2211−2223. doi: 10.11817/j.issn.1672-7207.2022.06.022
[17] 李坤蒙,李元辉,徐帅,等. PFC2D数值计算模型微观参数确定方法[J]. 东北大学学报(自然科学版),2016,37(4):563−567. LI Kunmeng, LI Yuanhui, XU Shuai, et al. Method to determine microscopic parameters of PFC2D numerical model[J]. Journal of Northeastern University (Natural Science), 2016, 37(4): 563−567.
[18] FAN Kaifang, LI Wenping, WANG Qiqing, et al. Distribution characteristic of mining-induced horizontal fracture in longwall panel: Field investigation and prediction model[J]. Engineering Failure Analysis, 2022, 142: 106778-106795.
-
期刊类型引用(12)
1. 张波,刘成,陈建奇,柳雪青,李洋冰,马立涛,杨江浩,乔方. 易碎煤岩制备方法及其孔渗参数测试技术. 非常规油气. 2024(01): 56-61 . 百度学术
2. 金霏阳,陈学习,高泽帅. 不同变质程度煤体微孔多重分形特征研究. 煤矿安全. 2024(03): 9-17 . 本站查看
3. 王睿,冯宏飞,柳长峰. 压汞法和液氮吸附法在高阶煤孔隙结构表征中的适用性. 石油钻采工艺. 2024(01): 112-118 . 百度学术
4. 刘尽贤. 渝东南南川地区深层煤层特征与煤层气赋存状态研究. 中国煤炭地质. 2024(06): 18-26 . 百度学术
5. 王晓婷,袁红,李梅. 不同表面活性剂对煤的润湿性的影响研究. 煤矿安全. 2024(12): 97-105 . 本站查看
6. 任少魁,秦玉金,贾宗凯,苏伟伟. 有效应力对煤体渗透率的影响试验研究. 煤矿安全. 2023(01): 56-61 . 本站查看
7. 肖乾隆,李锦,李伍. 姚桥矿7号煤层垂向孔隙结构及分形特征研究. 中国煤炭地质. 2023(09): 1-13+26 . 百度学术
8. 卢宏伟,徐宏杰,杨祎超,丁海,祝月,苟博明,戴王杰. 煤储层孔隙结构与甲烷吸附能量变化的非均质性特征. 科学技术与工程. 2023(30): 12817-12826 . 百度学术
9. 司俊鸿,李潭,胡伟,王乙桥. 采空区多孔介质等效孔隙网络拓扑结构表征算法研究. 华北科技学院学报. 2022(01): 1-6 . 百度学术
10. 王龙伟. 基于低温液氮吸附法的长平井田3号煤孔隙结构特征研究. 山西煤炭. 2022(03): 65-73+87 . 百度学术
11. 李照平,袁梅,许石青,张锐,杨萌萌,徐林. 贵州低透无烟煤分形维数表征及其影响因素. 矿业工程研究. 2022(04): 42-48 . 百度学术
12. 邢敏,吴金随,张辞源,李更川,高嵩. 基于CT扫描技术对煤岩的孔隙结构的提取和研究. 华北科技学院学报. 2021(03): 32-38 . 百度学术
其他类型引用(23)