Numerical simulation and discharge evaluation of Cenozoic “bottom aquifer” under drainage conditions
-
摘要:
我国东部隐伏矿区煤层开采会引起新生界底部含水层(简称“底含”)地下水间接补给基岩面下砂岩含水层,这不仅会导致地面沉降,同时也增加了矿井排水量,排泄量的确定为矿井水害防治和沉降量的预测提供了一定的依据。以淮南煤田板集矿为例,通过对9煤顶板砂岩含水层疏放导致与上覆“底含”补给关系的分析,构建了“底含”数值模型,获得了其水文地质参数,采用水均衡原理计算并评价其排泄量。结果表明:研究区“底含”可划分为5个水文地质单元区块,渗透系数为0.433~0.824 m/d,弹性释水率为1.8×10−6~3.6×10−6 m−1;在砂岩水疏放条件下,不同阶段“底含”排泄量约占疏放水总量的1/4,其来源主要为侧向补给和静储量消耗;因此,通过基岩风化带的注浆,封堵“底含”与煤层顶板之间的水力通道,是治理“底含”水补给砂岩水的有效措施。
Abstract:The coal seam mining in the east of China will cause the groundwater of the bottom aquifer of the Cenozoic (referred to as “bottom aquifer”) to indirectly recharge the sandstone aquifer under the bedrock surface, which will not only lead to ground settlement, but also increase the mine drainage. The drainage amount is indeed a certain basis for the prevention and control of mine water damage and the prediction of settlement amount. Taking Banji Mine in Huainan Coalfield as an example, a numerical model of “bottom aquifer” was constructed by analyzing the relationship between the sandstone aquifer of 9# coal roof and the overlying “bottom aquifer” recharge, its hydrogeological parameters were obtained, and its output was calculated and evaluated by water balance principle. The results show that the “bottom aquifer” in the study area can be divided into 5 hydrogeological unit blocks, the permeability coefficient is 0.433-0.824 m/d, the elastic water release rate is 1.8×10−6-3.6×10−6 m−1. Under the condition of sandstone water drainage, the “bottom aquifer” discharge at different stages accounts for about 1/4 of the total drainage water, and its sources are mainly lateral recharge and static reserve consumption. Therefore, through the grouting of weathering zone of bedrock, the hydraulic channel between the bottom and the roof of coal seam is an effective measure to control the recharge of sandstone water from the bottom water.
-
Keywords:
- bottom aquifer /
- numerical simulation /
- water balance method /
- discharge /
- Banji Coal Mine
-
-
表 1 “底含”参数分区一览表
Table 1 List of “bottom aquifer” parameters partitions
分区号 渗透系数/
(m·d−1)弹性释水率/
m−1储水系数 Ⅰ 0.762 0.000 001 8 0.000 103 Ⅱ 0.824 0.000 002 3 0.000 192 Ⅲ 0.433 0.000 002 8 0.000 164 Ⅳ 0.821 0.000 003 6 0.000 174 Ⅴ 0.699 0.000 003 0 0.000 155 表 2 “底含”静储量的变化量计算(1)
Table 2 Calculation of static storage change from“bottom aquifer”(1)
分区号 储水
系数面积/
m2水头差/
m静储量
变化量/
(m3·d−1)Ⅰ 0.000 103 5 599 862.26 1.068 10.81 Ⅱ 0.000 192 7 580 853.99 1.147 29.29 Ⅲ 0.000 164 2 511 845.73 1.430 10.33 Ⅳ 0.000 174 2 602 479.34 1.482 11.77 Ⅴ 0.000 155 3 168 939.39 1.469 12.66 表 3 “底含”侧向补给量计算(1)
Table 3 Calculation of lateral supply from “bottom aquifer”(1)
分区号 等效渗透
系数/(m·d−1)截面积/
m2水力
坡度侧向补给量/
(m3·d−1)Ⅰ+Ⅱ 0.798 287 517.83 0.0 003 096 71.034 Ⅳ+Ⅴ 0.753 254 233.91 0.0 015 834 303.123 表 4 “底含”静储量的变化量计算(2)
Table 4 Calculation of static storage change from“bottom aquifer” (2)
分区号 储水系数 面积/
m2水头差/
m静储量变化量/
(m3·d−1)Ⅰ 0.000 103 5 599 862.26 1.191 5.77 Ⅱ 0.000 192 7 580 853.99 1.200 14.68 Ⅲ 0.000 164 2 511 845.73 1.290 4.47 Ⅳ 0.000 174 2 602 479.34 1.279 4.87 Ⅴ 0.000 155 3 168 939.39 1.198 4.94 表 5 “底含” 侧向补给量计算(2)
Table 5 Calculation of lateral supply from“bottom aquifer” (2)
分区号 等效渗透系数/
(m·d−1)截面积/
m2水力坡度 侧向补给量/
(m3·d−1)Ⅰ+Ⅱ 0.798 287 517.83 0.000 367 6 84.3 Ⅳ+Ⅴ 0.753 254 233.91 0.001 916 7 367.005 表 6 各注浆期间“底含”水位变化情况表
Table 6 Water level changes in “bottom aquifer” during each grouting period
编号 升幅
(以观1孔
为例)影响注
浆段注浆结束
孔口压力/
MPa注浆前标高/
m注浆后标高/
m第Ⅰ次 6.60 D3-1-3 6.8 −101.18 −94.58 第Ⅱ次 0.90 D1-7 7.1 −111.01 −110.11 第Ⅲ次 1.11 D2-7 5.0 −114.83 −173.72 -
[1] 葛晓光. 两淮煤田厚新生界底部含砾地层沉积物成因分析[J]. 煤炭学报,2000,25(3):225−229. doi: 10.3321/j.issn:0253-9993.2000.03.001 GE Xiaoguang. Sediments of the bottom aquifer bearing gravel of thick cenozoic formation in Huaibei Huainan coalfield[J]. Journal of China Coal Society, 2000, 25(3): 225−229. doi: 10.3321/j.issn:0253-9993.2000.03.001
[2] 许光泉,严家平,桂和荣. 影响新生界“底含”发育的因素及含水层参数修正[J]. 煤田地质与勘探,2003,31(2):40−42. doi: 10.3969/j.issn.1001-1986.2003.02.013 XU Guangquan, YAN Jiaping, GUI Herong. Affecting caenozoic the “fourth aquifer” development factors and its parameters revising[J]. Coal Geology & Exploration, 2003, 31(2): 40−42. doi: 10.3969/j.issn.1001-1986.2003.02.013
[3] 李定龙,周治安. 临涣矿区底含水化学特征及其形成作用探讨[J]. 煤田地质与勘探,1994(2):37−41. LI Dinglong, ZHOU Zhian. Hydrochemical characteristics of the floor aquifer in Linhuan mining area and their origin[J]. Coal Geology & Exploration, 1994(2): 37−41.
[4] 赵世军,鹿存金,边凯,等. 银星一号煤矿侏罗系煤层顶板砂岩水害特征及防治技术[J]. 煤矿安全,2022,53(12):76−84. ZHAO Shijun, LU Cunjin, BIAN Kai, et al. Water disaster characteristics and prevention technology of Jurassic coal seam roof sandstone in Yinxing No.1 coal mine[J]. Safety in Coal Mines, 2022, 53(12): 76−84.
[5] 靳德武,李超峰,刘英锋,等. 黄陇煤田煤层顶板水害特征及其防控技术[J]. 煤田地质与勘探,2023,51(1):205−213. doi: 10.12363/issn.1001-1986.22.10.0754 JIN Dewu, LI Chaofeng, LIU Yingfeng, et al. Characteristics of roof water hazard of coal seam in Huanglong coalfield and key technologies for prevention and control[J]. Coal Geology & Exploration, 2023, 51(1): 205−213. doi: 10.12363/issn.1001-1986.22.10.0754
[6] 唐德才,李文平,武旭仁,等. 煤矿立井非采动破裂工程地质勘察方法[J]. 水文地质工程地质,2002(4):29−32. doi: 10.3969/j.issn.1000-3665.2002.04.009 TANG Decai, LI Wenping, WU Xuren, et al. Engineering geological investigation method of non-mining rupture shaft lining of coal mine in thick deep soils[J]. Hydrogeology and Engineering Geology, 2002(4): 29−32. doi: 10.3969/j.issn.1000-3665.2002.04.009
[7] 黄晖,贾海宾,韩必武,等. 井筒非采动变形破坏附加应力影响因素分析[J]. 煤田地质与勘探,2014,42(1):40−44. doi: 10.3969/j.issn.1001-1986.2014.01.009 HUANG Hui, JIA Haibin, HAN Biwu, et al. Analysis of influencing factors of additional stress of deformation and failure induced by non-mining disturbance in shaft[J]. Coal Geology & Exploration, 2014, 42(1): 40−44. doi: 10.3969/j.issn.1001-1986.2014.01.009
[8] 潘维强,张黎明,丛宇. 深厚松散地层泄压槽治理井筒破坏判据及其与地下水水位关系[J]. 吉林大学学报(地球科学版),2021,51(5):1578−1586. PAN Weiqiang, ZHANG Liming, CONG Yu. Relationship between shaft failure with stress-relief groove and groundwater level in thick loose strata[J]. Journal of Jilin University(Earth Science Edition), 2021, 51(5): 1578−1586.
[9] 张培森,李复兴,付翔,等. 祁东煤矿构造控水特征和地下水运移规律[J]. 煤炭科学技术,2023,51(2):292−305. ZHANG Peisen, LI Fuxing, FU Xiang, et al. Characteristics of structural water control and groundwater migration in Qidong coal mine[J]. Coal Science and Technology, 2023, 51(2): 292−305.
[10] 刘环宇,王思敬,曾钱帮,等. 基于模糊神经网络兖州矿区立井井筒非采动破裂的判别[J]. 岩土工程学报,2005(10):1237−1240. doi: 10.3321/j.issn:1000-4548.2005.10.027 LIU Huanyu, WANG Sijing, ZENG Qianbang, et al. Judgment for non-mining fracture of shaft-lining in Yanzhou mine based on fuzzy neural network[J]. Chinese Journal of Geotechnical Engineering, 2005(10): 1237−1240. doi: 10.3321/j.issn:1000-4548.2005.10.027
[11] 刘环宇,王思敬,曾钱帮,等. 煤矿立井井筒非采动破裂的人工神经网络预测[J]. 水文地质工程地质,2005(2):65−67. doi: 10.3969/j.issn.1000-3665.2005.02.014 LIU Huanyu, WANG Sijing, ZENG Qianbang, et al. An artificial neural network forecast model for shaft lining non-mining fracture[J]. Hydrogeology and Engineering Geology, 2005(2): 65−67. doi: 10.3969/j.issn.1000-3665.2005.02.014
[12] 朱冠宇,姜波,朱慎刚. 朱仙庄煤矿“五含”水文地质特征及水害防治对策[J]. 煤田地质与勘探,2018,46(2):111−117. doi: 10.3969/j.issn.1001-1986.2018.02.017 ZHU Guanyu, JIANG Bo, ZHU Shengang. Hydrogeological characteristics and prevention countermeasures of “fifth aquifer” in Zhuxianzhuang coal mine[J]. Coal Geology & Exploration, 2018, 46(2): 111−117. doi: 10.3969/j.issn.1001-1986.2018.02.017
[13] 刘德民,顾爱民,闫凯迪. 基于水力学与水化学耦合的矿井涌(突)水水源识别方法研究[J]. 煤炭工程,2023,55(1):87−93. LIU Deming, GU Aiming, YAN Kaidi. Source discrimination method of mine water inflow based on the coupling of hydraulics and hydrochemistry[J]. Coal Engineering, 2023, 55(1): 87−93.
[14] 许延春,张旗,谢进国,等. 徐庄煤矿7199综放工作面突水分析[J]. 辽宁工程技术大学学报(自然科学版),2015,34(2):145−149. XU Yanchun, ZHANG Qi, XIE Jinguo, et al. Water inrush analysis of 7199 fully mechanized working face in Xuzhuang coal mine[J]. Journal of Liaoning Technical University(Natural Science), 2015, 34(2): 145−149.
[15] 刘鑫,陈陆望,林曼利,等. 采动影响下矿井突水水源Fisher判别与地下水补给关系反演[J]. 水文地质工程地质,2013,40(4):36−43. LIU Xin, CHEN Luwang, LIN Manli, et al. Fisher discriminant analysis for coal mining inrush water source under mining-induced disturbance and inversion of groundwater recharge relation[J]. Hydrogeology & Engineering Geology, 2013, 40(4): 36−43.
[16] 雷崇利,常青,李炳宏. 煤层上覆含水层受采煤影响的区带划分[J]. 中国地质灾害与防治学报,2013,24(1):56−59. LEI Chongli, CHANG Qing, LI Binghong. Dividing different affected range of cover aquifer in coa mine[J]. The Chinese Journal of Geological Hazard and Control, 2013, 24(1): 56−59.
[17] 陈陆望,彭智宏,王迎新,等. 松散承压含水层渗透系数变化规律与估算模型研究[J]. 煤田地质与勘探,2021,49(1):189−197. doi: 10.3969/j.issn.1001-1986.2021.01.020 CHEN Luwang, PENG Zhihong, WANG Yingxin, et al. Variation law and estimation model of permeability coefficient in unconsolidated cinfined aquifer[J]. Coal Geology & Exploration, 2021, 49(1): 189−197. doi: 10.3969/j.issn.1001-1986.2021.01.020
[18] 韦华鹏,罗奇斌,康卫东,等. 基于不同开采方式的煤矿涌水量预测及其环境影响分析[J]. 水文地质工程地质,2023,50(1):21−31. WEI Huapeng, LUO Qibin, KANG Weidong, et al. Prediction of coal mine water inflow by different mining methods and environment impact analyses[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 21−31.
-
期刊类型引用(5)
1. 任志成,时宝,胡继峰,伦嘉云. 煤矿安全管理智能化建设及发展研究. 中国煤炭. 2023(07): 61-66 . 百度学术
2. 宋涛,王洪兴. 矿山智能化建设的挑战研究. 世界有色金属. 2023(11): 220-222 . 百度学术
3. 雷志勇,王磊,高振飞,王忠鑫. 露天煤矿智能安全保障体系现状与发展趋势. 露天采矿技术. 2023(04): 17-22 . 百度学术
4. 高旗. 5G技术在煤矿智能化中的应用前景. 内蒙古煤炭经济. 2023(18): 136-138 . 百度学术
5. 任志成,孔德中,宋高峰,许鹏飞,李淋. 基于GRA和AHP的煤矿一般事故防控研究. 矿业研究与开发. 2023(12): 131-137 . 百度学术
其他类型引用(0)