In-situ stress measurement based on Kaiser effect and differential strain analysis method and regional in-situ stress distribution research
-
摘要:
以往差应变分析法(DSA)通过估算垂向主应力以求解地应力,使得该方法可靠性较差。基于岩石试样的Kaiser效应,结合差应变法,提出了一种基于Kaiser效应的地应力差应变测试方法(Kaiser-DSA法),并利用Kaiser-DSA法与应力解除法进行了对比,表明Kaiser-DSA法测试结果与应力解除法的测试结果相对误差小,且最大水平主应力方向基本一致;基于地应力测试结果,分析了窑街矿区地应力分布规律,探究了窑街矿区现今地应力场成因。结果表明:窑街矿区区域上受到了挤压构造应力场的作用,残余应力较高;受青藏逆冲推覆作用与F19断层的顺时针剪切作用,该区域地应力场以σH(最大水平主应力)>σv(垂向主应力)>σh(最小水平主应力)型的走滑型应力状态为主;此外,较高的差应力使得该区域回采时围岩体变形破坏严重,动力灾害事件频发。
Abstract:In previous practice, the differential strain analysis (DSA) method, relied upon for estimating vertical principal stress to resolve geological stress, has shown limitations in reliability. Drawing upon observations of the Kaiser effect in rock samples, we introduce the Kaiser-differential strain analysis (Kaiser-DSA) method, amalgamating the Kaiser effect with the DSA method to assess in-situ stress differentials. Comparative evaluation with the stress relief method reveals that the Kaiser-DSA method demonstrates minimal relative error and generally consistent orientation of the maximum horizontal principal stress. Utilizing the findings from in-situ stress testing, this investigation scrutinizes the distribution patterns of in-situ stress in Yaojie Mining Area and investigates the causative factors contributing to the prevailing in-situ stress field. The study elucidates that Yaojie Mining Area is subject to the influence of compressive tectonic stress fields, resulting in elevated residual stress. Influenced by the Qinghai-Tibet thrust nappe action and the clockwise shear action of the F19 fault, the geostress field in this region predominantly manifests a strike-slip stress state typified by σH>σv>σh. Furthermore, the heightened differential stress within this locale exacerbates deformation and damage to the surrounding rock mass during mining activities, thereby exacerbating the frequency of dynamic disaster events.
-
-
表 1 基于Kaiser效应的差应变法地应力测试结果
Table 1 In-situ stress test results based on Kaiser effect using the differential strain method
编号 最大波速角度/(°) σH/MPa σv/MPa σh/MPa 方位角/(°) BC-5 142.7 22.69 16.52 17.67 N183.4°E BC-7 39.64 21.14 16.23 16.35 N151.7°E JK1-11 66.39 14.1 11.72 12.25 N165.8°E JK1-14 35.51 18.91 14.25 15.47 N174.6°E 注: σH为最大水平主应力; σv为垂向主应力; σh为最小水平主应力。 表 2 基于应力解除法地应力测试结果
Table 2 In-situ stress test results based on the stress relief method
编号 σH/MPa σv/MPa σh/MPa 方位角/(°) BC-5 23.39 17.86 18.36 N182.14°E BC-7 21.76 16.52 17.75 N149.26°E -
[1] CHENG X G, QIAO W, DOU L M, et al. In-situ stress field inversion and its impact on mining-induced seismicity[J]. Geomatics, Natural Hazards and Risk, 2023, 14(1): 176−195. doi: 10.1080/19475705.2022.2158377
[2] 牛然,刘度,霍中刚,等. 柿庄南区块煤储层地应力和破裂压力特征及其耦合关系[J]. 煤矿安全,2024,55(4):11−18. NIU Ran, LIU Du, HUO Zhonggang, et al. In-situ stress and fracture pressure of coal reservoir in Shizhuangnan Block and their coupling relations[J]. Safety in Coal Mines, 2024, 55(4): 11−18.
[3] 侯奎奎,吴钦正,张凤鹏,等. 不同地应力测试方法在三山岛金矿2 005 m竖井建井区域的应用及其地应力分布规律研究[J]. 岩土力学,2022,43(4):1093−1102. HOU Kuikui, WU Qinzheng, ZHANG Fengpeng, et al. Application of different in situ stress test methods in the area of 2 005 m shaft construction of Sanshandao gold mine and distribution law of in situ stress[J]. Rock and Soil Mechanics, 2022, 43(4): 1093−1102.
[4] 王成虎,高桂云,王洪,等. 利用室内和现场水压致裂试验联合确定地应力与岩石抗拉强度[J]. 地质力学学报,2020,26(2):167−174. WANG Chenghu, GAO Guiyun, WANG Hong, et al. Integrated determination of principal stress and tensile strength of rock based on the laboratory and field hydraulic fracturing tests[J]. Journal of Geomechanics, 2020, 26(2): 167−174.
[5] 王超,王益腾,韩增强,等. 垂直孔应力解除法地应力测试技术及工程应用[J]. 岩土力学,2022,43(5):1412−1421. WANG Chao, WANG Yiteng, HAN Zengqiang, et al. In-situ stress measurement technology for vertical hole based on stress relief method and its application[J]. Rock and Soil Mechanics, 2022, 43(5): 1412−1421.
[6] 赵海峰,杨昌增,冯堃,等. 韩城区块西北部三维地应力场反演分析[J]. 煤矿安全,2023,54(10):16−23. ZHAO Haifeng, YANG Changzeng, FENG Kun, et al. Inversion analysis of three-dimensional geostress field in northwest Hancheng Block[J]. Safety in Coal Mines, 2023, 54(10): 16−23.
[7] 刘利斌,段东,郑朝阳. 基于岩石声发射Kaiser效应的地应力测试研究[J]. 煤炭科学技术,2020,48(12):45−50. LIU Libin, DUAN Dong, ZHENG Chaoyang. Study on in-situ stress testing based on Kaiser effect of rock acoustic emission[J]. Coal Science and Technology, 2020, 48(12): 45−50.
[8] 徐延涛,郭布民,邱守美,等. 基于主方向Kaiser效应的地应力测试技术[J]. 石油化工应用,2022,41(11):101−103. XU Yantao, GUO Bumin, QIU Shoumei, et al. Technology on ground stress measurement based on Kaiser effect in main direction[J]. Petrochemical Industry Application, 2022, 41(11): 101−103.
[9] 赵奎,项威斌,曾鹏,等. 岩石声发射Kaiser效应研究现状及展望[J]. 金属矿山,2021(1):94−105. ZHAO Kui, XIANG Weibin, ZENG Peng, et al. Research status and prospect of Kaiser effect in rock acoustic emission[J]. Metal Mine, 2021(1): 94−105.
[10] 沈海超,程远方,王京印,等. 主方向差应变地应力测量方法[J]. 新疆石油地质,2008,29(2):250−252. SHEN Haichao, CHENG Yuanfang, WANG Jingyin, et al. Principal direction differential strain method for in situ stress measurement and application[J]. Xinjiang Petroleum Geology, 2008, 29(2): 250−252.
[11] 彭华,马秀敏,姜景捷. 差应变法地应力测量−以汶川地震断裂带科学钻探WFSD-1钻孔为例[J]. 地质力学学报,2011,17(3):249−261. PENG Hua, MA Xiumin, JIANG Jingjie. In-situ stress measurement by differential strain analysis method in WFSD-1[J]. Journal of Geomechanics, 2011, 17(3): 249−261.
[12] 白金朋,彭华,郑哲夏,等. 屯1井差应变分析法地应力测量[J]. 地质力学学报,2013,19(2):117−124. doi: 10.3969/j.issn.1006-6616.2013.02.001 BAI Jinpeng, PENG Hua, ZHENG Zhexia, et al. In-situ stress measurement by differential strain analysis method in the well tun-1[J]. Journal of Geomechanics, 2013, 19(2): 117−124. doi: 10.3969/j.issn.1006-6616.2013.02.001
[13] 刘建锋. 岩石声发射研究现状[J]. 四川师范大学学报(自然科学版),2021,44(5):569−575. doi: 10.3969/j.issn.1001-8395.2021.05.001 LIU Jianfeng. Research status of rock acoustic emission[J]. Journal of Sichuan Normal University (Natural Science), 2021, 44(5): 569−575. doi: 10.3969/j.issn.1001-8395.2021.05.001
[14] 孔政,曾溅辉,左名圣. Kaiser效应点识别方法及储层地应力预测[J]. 油气地质与采收率,2023,30(6):54−60. KONG Zheng, ZENG Jianhui, ZUO Mingsheng. Kaiser effect point identification method and in situ stress prediction of reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(6): 54−60.
[15] 张亚萍,俞然刚,阎向宏. 地层岩心弹性力学参数及主应力方向的超声波测定[J]. 声学技术,2003,22(3):157−161. ZHANG Yaping, YU Rangang, YAN Xianghong. Determination of elasticity mechanics parameter and main stress direction for stratum rock using ultrasonic waves[J]. Technical Acoustics, 2003, 22(3): 157−161.
[16] 曹峰,何建华,王园园,等. 合川地区须二段低各向异性储层现今地应力方向评价方法[J]. 地球科学进展,2022,37(7):742−755. CAO Feng, HE Jianhua, WANG Yuanyuan, et al. Methods to evaluate present-day in-situ stress direction for low anisotropic reservoirs in the second member of the Xujiahe Formation in Hechuan Area[J]. Advances in Earth Science, 2022, 37(7): 742−755.
[17] 张雪媛,马昊宾,许健飞,等. 尺寸与形状效应下煤岩组合体力学特性与声发射特征分析[J]. 煤矿安全,2022,53(7):45−51. ZHANG Xueyuan, MA Haobin, XU Jianfei, et al. Analysis of mechanical properties and acoustic emission characteristic of coal-rock assembly under the effect of size and shape[J]. Safety in Coal Mines, 2022, 53(7): 45−51.
[18] 刘亮,杜广印,李二兵,等. 北山花岗岩断裂力学行为及其声发射特征研究[J]. 岩石力学与工程学报,2020,39(S2):3237−3244. LIU Liang, DU Guangyin, LI Erbing, et al. Fracture mechanical behaviors and acoustic emission characteristics of Beishan granite under CCNBD test[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2): 3237−3244.
[19] 唐巨鹏,任凌冉,潘一山,等. 高地应力条件煤与瓦斯突出冲击力演化规律研究[J]. 煤炭科学技术,2023,51(8):116−128. TANG Jupeng, REN Lingran, PAN Yishan, et al. Study on the impact force evolution law of coal and gas outburst under high ground stress[J]. Coal Science and Technology, 2023, 51(8): 116−128.
[20] 尹爱民,王庆刚,刘建庄,等. 基于空心包体应变法的某矿区软弱岩层地应力测量[J]. 现代矿业,2021,37(10):98−100. YIN Aimin, WANG Qinggang, LIU Jianzhuang, et al. In-situ stress measurement of weak rock formation in a mining area based on hollow enveloping strain method[J]. Modern Mining, 2021, 37(10): 98−100.
[21] CHENG X G, QIAO W, HE H, et al. Characteristics of regional geostress field and its impact on rock burst: A case study on the Binchang mining area, China[J]. Environmental Earth Sciences, 2023, 82(24): 612. doi: 10.1007/s12665-023-11288-1
[22] 康红普,伊丙鼎,高富强,等. 中国煤矿井下地应力数据库及地应力分布规律[J]. 煤炭学报,2019,44(1):23−33. KANG Hongpu, YI Bingding, GAO Fuqiang, et al. Database and characteristics of underground in situ stress distribution in Chinese coal mines[J]. Journal of China Coal Society, 2019, 44(1): 23−33.
[23] 艾秀峰. 青海西宁-民和盆地二氧化碳气藏研究及隧道危险性分区评价[J]. 矿产与地质,2021,35(1):154−162. AI Xiufeng. Study on CO2 reservoir and risk zoning evaluation of the tunnel in Xining-Minhe Basin, Qinghai[J]. Mineral Resources and Geology, 2021, 35(1): 154−162.
[24] 王汉青. 青藏高原东北缘民和盆地地貌演化及景观特征分析[D]. 曲阜:曲阜师范大学,2021. [25] 张虎权,杨中轩. 民和盆地的构造特征[J]. 石油实验地质,1996,18(3):283−288. ZHANG Huquan, YANG Zhongxuan. The structural characteristics of the Minhe Basin[J]. Petroleum Geology & Experiment, 1996, 18(3): 283−288.
[26] 鞠玮,牛小兵,冯胜斌,等. 页岩油储层现今地应力场与裂缝有效性评价−以鄂尔多斯盆地延长组长7油层组为例[J]. 中国矿业大学学报,2020,49(5):931−940. JU Wei, NIU Xiaobing, FENG Shengbin, et al. The present-day in situ stress state and fracture effectiveness evaluation in shale oil reservoir: A case study of the Yanchang Formation Chang 7 oil-bearing layer in the Ordos Basin[J]. Journal of China University of Mining & Technology, 2020, 49(5): 931−940.
[27] XIE H P, LI L Y, PENG R D, et al. Energy analysis and criteria for structural failure of rocks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2009, 1(1): 11−20. doi: 10.3724/SP.J.1235.2009.00011
[28] 赫海全,袁崇亮,张玉生. 海石湾煤矿地应力分布特征研究[J]. 内蒙古煤炭经济,2021(16):1−4.