矿用有机增韧泡沫的制备及性能研究

    杜建华, 李业, 孙超, 刘铭, 祝富盛

    杜建华,李业,孙超,等. 矿用有机增韧泡沫的制备及性能研究[J]. 煤矿安全,2024,55(1):116−125. DOI: 10.13347/j.cnki.mkaq.20230329
    引用本文: 杜建华,李业,孙超,等. 矿用有机增韧泡沫的制备及性能研究[J]. 煤矿安全,2024,55(1):116−125. DOI: 10.13347/j.cnki.mkaq.20230329
    DU Jianhua, LI Ye, SUN Chao, et al. Study on preparation and properties of organic toughened foam for mining[J]. Safety in Coal Mines, 2024, 55(1): 116−125. DOI: 10.13347/j.cnki.mkaq.20230329
    Citation: DU Jianhua, LI Ye, SUN Chao, et al. Study on preparation and properties of organic toughened foam for mining[J]. Safety in Coal Mines, 2024, 55(1): 116−125. DOI: 10.13347/j.cnki.mkaq.20230329

    矿用有机增韧泡沫的制备及性能研究

    基金项目: “十三五”国家重点研发计划资助项目(2018YFC0807900)
    详细信息
      作者简介:

      杜建华(1974—),男,山东肥城人,高级工程师,本科,主要从事矿井“一通三防”方面的工作。E-mail:dwa667231@163.com

    • 中图分类号: TD75+2.2

    Study on preparation and properties of organic toughened foam for mining

    • 摘要:

      为增强矿用高分子泡沫材料的韧性,添加有机材料聚乙二醇(PEG)对泡沫进行增韧效果改性。采用扫描电镜、热重实验、氧指数测试、锥形量热测试、抗压强度测试,发泡与固化时间测定研究了添加不同分子量PEG改性的作用效果。结果表明:不同分子量PEG能有效增加酚醛树脂泡沫的抗压强度,减小其粉化率,PEG分子量为1 000时,添加量为6%增韧效果最好,抗压强度达到0.155 MPa,粉化率降低到1.3%;添加一定量的PEG能有效增加酚醛树脂发泡倍数,但同时会增加其泡沫的收缩率与固化时间;PEG改性酚醛树脂泡沫孔径结构更加均匀,泡沫的孔径也更加均匀,这主要是由于未与酚醛树脂反应的PEG起到了表面活性剂的作用,能更好地使固化剂等与树脂混合;对于不同PEG分子量酚醛树脂泡沫的热稳定性,分子量越大,添加量越多的酚醛树脂泡沫其热稳定越差。

      Abstract:

      In order to enhance the toughness of mining polymer foam, polyethylene glycol (PEG), an organic material, was added to modify the toughening effect of foam. The effect of PEG modification with different molecular weight was studied by scanning electron microscope, thermogravimetric test, oxygen index test, cone calorimetric test, compressive strength test, foaming and curing time test. The results show that: PEG with different molecular weight can effectively increase the compressive strength of phenolic resin foam and reduce its pulverization rate. When the molecular weight of PEG is 1 000, the addition of 6% has the best toughening effect, the compressive strength reaches 0.155 MPa, and the pulverization rate decreases to 1.3%. Adding a certain amount of PEG can effectively increase the foaming ratio of phenolic resin, but at the same time, it will increase the shrinkage and curing time of its foam. The pore structure of PEG modified phenolic resin foam is more uniform, and the pore size of foam is also more uniform, mainly because the PEG that does not react with the phenolic resin plays the role of surfactant, and can better mix the curing agent with the resin. Compared with the thermal stability of phenolic resin foam with different PEG molecular weight, the larger the molecular weight, the worse the thermal stability of phenolic resin foam with more PEG molecular weight.

    • 图  1   聚乙二醇增韧机理

      Figure  1.   Toughening mechanism of polyethylene glycol

      图  2   PEG树脂固化时间与固化温度

      Figure  2.   PEG resin curing time and curing temperature

      图  3   PEG树脂发泡收缩率与发泡倍数

      Figure  3.   Shrinkage rate and foaming ratio of PEG resin foam

      图  4   PEG树脂粉化率与抗压强度

      Figure  4.   Pulverization rate and compressive strength of PEG resin

      图  5   PEG600树脂泡沫热重曲线

      Figure  5.   Thermogravimetric curves of PEG600 resin foam

      图  6   PEG1000树脂泡沫热重曲线

      Figure  6.   Thermogravimetric curves of PEG1000 resin foam

      图  7   PEG2000树脂泡沫热重曲线

      Figure  7.   Thermogravimetric curves of PEG2000 resin foam

      图  8   不同分子量PEG树脂泡沫热重曲线

      Figure  8.   Thermogravimetric curves of PEG resin foam with different molecular weight

      图  9   PEG改性酚醛树脂泡沫极限氧指数

      Figure  9.   Limiting oxygen index of PEG modified phenolic resin foam

      图  10   不同分子量PEG改性泡沫SEM

      Figure  10.   SEM of PEG modified foam with different molecular weight

      图  11   不同添加量PEG-1000改性泡沫SEM

      Figure  11.   SEM of PEG-1000 modified foam with different dosage

      表  1   酚醛树脂中PEG的配比

      Table  1   Ratio of PEG in phenolic resin

      编号质量分数/%
      PEG600PEG1000PEG2000
      PEG600-22
      PEG600-44
      PEG600-66
      PEG600-88
      PEG600-1010
      PEG1000-22
      PEG1000-44
      PEG1000-66
      PEG1000-88
      PEG1000-1010
      PEG2000-22
      PEG2000-44
      PEG2000-66
      PEG2000-88
      PEG2000-1010
      下载: 导出CSV

      表  2   PF与PEG的热重数据

      Table  2   Thermogravimetric data of PF and PEG

      样品编号T−5%/℃T−30%/℃Tmax/℃残炭量/%
      第1阶段第2阶段
      PF124.8479.8217.5466.650.10
      PEG600-2120.6475.6216.3468.349.79
      PEG600-4118.8471.0214.3469.849.19
      PEG600-6134.1462.5214.1470.849.32
      PEG600-8111.1429.3213.3471.847.89
      PEG600-10141.3424.5212.8472.348.66
      PEG1000-2123.8478.2216.8470.849.34
      PEG1000-4117.5466.6215.3471.148.30
      PEG1000-6124.1454.6214472.349.10
      PEG1000-8105.8430.5213.1473.147.74
      PEG1000-10101.1421.5212.1473.346.92
      PEG2000-299.3463.0217.1470.147.66
      PEG2000-499.6418.6214.3470.847.61
      PEG2000-698.3417.8212.8471.147.48
      PEG2000-897.8409.0212.5472.846.82
      PEG2000-1097.5394.6212.1473.146.81
        注:T−5%T−30%分别为失重5%、30%的温度;Tmax为在失重最大点的温度。
      下载: 导出CSV

      表  3   PF与不同分子量PEG的热重数据

      Table  3   Thermogravimetric data of PF and PEG with different molecular weight

      样品编号T-5%/℃T-30%/℃Tmax/℃残炭量/%
      第1阶段第2阶段
      PF124.88479.83217.50466.6650.10
      PEG600-4118.80471.00214.33469.8349.19
      PEG1000-4117.50466.60215.33471.1648.30
      PEG2000-499.66418.66214.33470.8347.91
      下载: 导出CSV
    • [1] 邓健. 青龙寺煤矿首采工作面低氧防治实践[J]. 煤矿安全,2021,52(5):78−81.

      DENG Jian. Practice of low oxygen control in the first mining face of Qinglongsi Coal Mine[J]. Safety in Coal Mines, 2021, 52(5): 78−81.

      [2] 李志勇,辛民,刘星乐,等. 粉煤灰陶粒混凝土隔离墙的研究与应用[J]. 煤矿安全,2021,52(7):79−83.

      LI Zhiyong, XIN Min, LIU Xingle, et al. Research and application of pulverized coal ash ceramsite concrete isolation wall[J]. Safety in Coal Mines, 2021, 52(7): 79−83.

      [3] 蔡诗琦,孟付良,石剑,等. 腰果酚改性酚醛树脂的研究进展[J]. 化工新型材料,2023,51(6):29−33.

      CAI Shiqi, MENG Fuliang, SHI Jian, et al. Research progress of cardanol modified phenolic resin[J]. New Chemical Materials, 2023, 51(6): 29−33.

      [4] 李蔚. 酚醛泡沫的增韧改性及耐火性能[J]. 消防科学与技术,2015,34(7):857−859.

      LI Wei. Fire resistance and toughening modification of phenolic foam[J]. Fire Science and Technology, 2015, 34(7): 857−859.

      [5] 李伟,毕雯倩,钟悦,等. 橡胶乳液改性酚醛树脂增强机油滤纸性能的研究[J]. 中国造纸,2016,35(8):78−81.

      LI Wei, BI Wenqian, ZHONG Yue, et al. Application of a blend of rubber latex-phenolic resin to strengthen oil filter paper[J]. China Pulp & Paper, 2016, 35(8): 78−81.

      [6] 李亚锋,洪旭辉. 增韧改性对玻纤织物增强酚醛复合材料性能影响研究[J]. 玻璃钢/复合材料,2015(11):71−74.

      LI Yafeng, HONG Xuhui. Study on the effects of toughness modification on the prope rties of glass fabric reinforced phenolic composites[J]. Composites Science and Engineering, 2015(11): 71−74.

      [7] 葛铁军,张诚晋,唐恺鸿,等. 对苯二胺改性酚醛泡沫的性能研究[J]. 化工新型材料,2023,51(5):123−127.

      GE Tiejun, ZHANG Chengjin, TANG Kaihong, et al. Study on the properties of phenolic foam modified by p-phenylenediamine[J]. New Chemical Materials, 2023, 51(5): 123−127.

      [8] 葛铁军,吴美珊,唐恺鸿. DPAP改性酚醛泡沫性能研究[J]. 化工新型材料,2022,50(8):130−134.

      GE Tiejun, WU Meishan, TANG Kaihong. Study on the performance of DPAP modified PF[J]. New Chemical Materials, 2022, 50(8): 130−134.

      [9] 陈嘉兴,柳翱,侯瑞斌,等. 对苯二甲醇改性单宁酚醛泡沫的性能研究[J]. 长春工业大学学报,2022,43(3):213−218.

      CHEN Jiaxing, LIU Ao, HOU Ruibin, et al. Study on properties of tannin phenolic foam modified by terephthalic alcohol[J]. Journal of Changchun University of Technology, 2022, 43(3): 213−218.

      [10] 徐金潇,袁树杰. 新型矿用酚醛泡沫材料研究[J]. 安徽理工大学学报(自然科学版),2015,35(3):63−66.

      XU Jinxiao, YUAN Shujie. Research on a new mine phenolic foam material[J]. Journal of Anhui University of Science and Technology (Natural Science), 2015, 35(3): 63−66.

      [11] 余文俊,张道洪,陈苏芳. 低温发泡用热固性酚醛树脂的固化动力学研究[J]. 化学与生物工程,2016,33(11):32−35. doi: 10.3969/j.issn.1672-5425.2016.11.006

      YU Wenjun, ZHANG Daohong, CHEN Sufang. Curing kinetics of thermosetting phenolic resin with low temperature-foaming[J]. Chemistry & Bioengineering, 2016, 33(11): 32−35. doi: 10.3969/j.issn.1672-5425.2016.11.006

      [12] 李霄,牛茂斐,曲文英,等. 氨基咪唑类甲醛捕获剂去除人造板中游离甲醛[J]. 环境工程学报,2014,8(9):3893−3898.

      LI Xiao, NIU Maofei, QU Wenying, et al. Acquisition of free formaldehyde in wood-based panels using amino-imidazole scavenger[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3893−3898.

    • 期刊类型引用(1)

      1. 孔令帅,栗继祖. 安全基地型领导对新生代矿工安全参与行为的影响研究. 煤炭经济研究. 2025(02): 170-176 . 百度学术

      其他类型引用(0)

    图(11)  /  表(3)
    计量
    • 文章访问数:  23
    • HTML全文浏览量:  2
    • PDF下载量:  4
    • 被引次数: 1
    出版历程
    • 收稿日期:  2023-03-16
    • 修回日期:  2023-04-16
    • 刊出日期:  2024-01-23

    目录

      /

      返回文章
      返回