• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

不同能级矿震波对深部盘区大巷围岩扰动效应

任文涛,郭鹏慧,曲 柱,李家卓

任文涛,郭鹏慧,曲 柱,李家卓. 不同能级矿震波对深部盘区大巷围岩扰动效应[J]. 煤矿安全, 2023, 54(7): 11-18.
引用本文: 任文涛,郭鹏慧,曲 柱,李家卓. 不同能级矿震波对深部盘区大巷围岩扰动效应[J]. 煤矿安全, 2023, 54(7): 11-18.
REN Wentao. Disturbance effect of shock bump waves with different energy levels on surrounding rock of deep roadway[J]. Safety in Coal Mines, 2023, 54(7): 11-18.
Citation: REN Wentao. Disturbance effect of shock bump waves with different energy levels on surrounding rock of deep roadway[J]. Safety in Coal Mines, 2023, 54(7): 11-18.

不同能级矿震波对深部盘区大巷围岩扰动效应

Disturbance effect of shock bump waves with different energy levels on surrounding rock of deep roadway

  • 摘要: 进入深部开采,巷道围岩承受高静载,在局部复杂地质构造区域高水平应力的加持下,微小的动载产生的扰动效应即可诱发巷道冲击地压,不同能级矿震波对巷道产生不同的扰动效应,可以诱发巷道围岩不同位置的不同程度破坏。针对彬长矿区某煤矿一盘区大巷频繁发生冲击地压的问题,在分析巷道冲击微震监测能量特征的基础上,进行了数值模拟研究,通过应力、能量、位移表征了不同能级矿震矿震波对巷道围岩的扰动效应。结果表明:冲击地压发生前,微震监测偶有大能量事件出现,但是其余时间总频次和总能量处于较低水平,总能量往往小于105 J,发生时,微震监测总频次和总能量骤增,总能量达到105 J以上,发生后,微震监测总能量和总频次骤减,一段时间内处于静默状态;静载条件下,底板相比较顶板离层现象更显著,矿震扰动下,顶板相比较底板更易发生离层,105 J及以下能级矿震扰动下,对巷道围岩产生的影响是顶板>底板>两帮,105 J以上能级矿震扰动下,对巷道围岩产生的影响是顶板>两帮>底板。
    Abstract: In deep mining, the surrounding rock of the roadway is subjected to high static load. Under the support of high-level stress in the local complex geological structure area, the disturbance effect caused by small dynamic load can induce the rock burst of the roadway. Different energy level shock bump waves have different disturbance effects on the roadway, which can induce different degrees of damage in different positions of the surrounding rock of the roadway. Aiming at the problem of frequent rock burst in the main roadway of the first area of Gaojiapu Coal Mine in Binchang Mining Area, based on the analysis of the energycharacteristics of the roadway impact micro-seismic monitoring, the numerical simulation study was carried out. The stress, energy and displacement were used to characterize the disturbance effect of different energy level shock bump waves on the surrounding rock of the roadway. The results show that before the occurrence of rock burst, there are occasional large energy events in micro-seismic monitoring, but the total frequency and total energy are at a low level in the rest of the time, and the total energy is often less than 105 J. When the rock burst occurs, the total frequency and total energy of micro-seismic monitoring increase sharply, and the total energy reaches more than 105 J. After the rock burst occurs, the total energy and total frequency of micro-seismic monitoring decrease sharply, and they are in a silent state for a period of time. Under the condition of static load, the phenomenon of floor separation is more significant than that of roof separation. Under the disturbance of shock bump , the roof is more prone to separation than the floor. Under the disturbance of mine earthquake with 105 J and below, the influence on the surrounding rock of roadway is roof > floor > two sides. Under the disturbance of shock bump with 105 J and above, the influence on the surrounding rock of roadway is roof > two sides > floor.
  • [1] 滕吉文,乔勇虎,宋鹏汉.我国煤炭需求、探查潜力与高效利用分析[J].地球物理学报,2016,59(12):4633-4653. TENG Jiwen, QIAO Yonghu, SONG Penghan. Analysis of exploration, potential reserves and high efficient utilization of coal in China[J]. Chinese Journal of Geophysics, 2016, 59(12): 4633-4653. [2] 姜耀东,潘一山,姜福兴,等.我国煤炭开采中的冲击地压机理和防治[J].煤炭学报,2014,39(2):205-213. JIANG Yaodong, PAN Yishan, JIANG Fuxing, et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society, 2014, 39(2): 205-213. [3] 窦林名,何学秋,REN Ting,等.动静载叠加诱发煤岩瓦斯动力灾害原理及防治技术[J].中国矿业大学学报,2018,47(1):48-59. DOU Linming, HE Xueqiu, REN Ting, et al. Mechanism of coal-gas dynamic disasters caused by the superposition of static and dynamic load and its control technology[J]. Journal of China University of Mining & Technology, 2018, 47(1): 48-59. [4] 窦林名,何江,曹安业,等.煤矿冲击地矿压动静载叠加原理及其防治[J].煤炭学报,2015,40(7):1469-1476. DOU Linming, HE Jiang, CAO Anye, et al. Rock burst prevention methods based on theory of dynamic and static combined load induced in coal mine[J]. Journal of China Coal Society, 2015, 40(7): 1469-1476. [5] CAI Wu, DOU Linming, SI Guangyao, et al. Fault-Induced coal burst mechanism under mining-induced static and dynamic stresses[J]. Engineering, 2021, 7(5): 306-334. [6] 杨书浩,王俊,宁建国,等.动载扰动下深部大断面硐室围岩“帮-顶”联动失稳机理[J].煤炭科学技术,2021,49(10):23-33. YANG Shuhao, WANG Jun, NING Jianguo, et al.Mechanism of connected instability of “rib-roof”in deep large section chamber under dynamic disturbance[J]. Coal Science and Technology, 2021, 49(10): 23-33. [7] 靖洪文,吴疆宇,尹乾,等.动载扰动下深部煤巷冲击冒顶的颗粒流数值模拟研究[J].岩石力学与工程学报,2020,39(S2):3475-3487. JING Hongwen, WU Jiangyu, YIN Qian, et al. Particle flow simulation of rock burst and roof fall of deep coal roadway under dynamic disturbance[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2): 3475-3487. [8] 杨逾,孙艺丹,张国赟.动载下巷道围岩微震响应特征及支护研究[J].中国安全生产科学技术,2020,16(6):73-79. YANG Yu, SUN Yidan, ZHANG Guoyun. Study on micro-seismic response characteristics and support technology of roadway surrounding rock under dynamic load [J]. Journal of Safety Science and Technology, 2020, 16(6): 73-79. [9] 焦建康,鞠文君.动载扰动下巷道锚固承载结构冲击破坏机制[J].煤炭学报,2021,46(S1):94-105. JIAO Jiankang, JU Wenjun. Burst failure mechanism of roadway anchorage bearing structure under dynamic load disturbance[J]. Journal of China Coal Society, 2021, 46(S1): 94-105. [10] 焦建康,鞠文君,吴拥政,等.动载冲击地压巷道围岩稳定性多层次控制技术[J].煤炭科学技术,2019,47(12):10-17. JIAO Jiankang, JU Wenjun, WU Yongzheng, et al. Multi-layer control technologies for surrounding rock stability of dynamic-loading rock burst roadway[J]. Coal Science and Technology, 2019, 47(12): 10-17. [11] 曹安业,胡阳,李兵.矿震扰动巷道帮部卸压区域锚索加固研究及应用[J].煤炭科技,2021,42(2):39 -46. CAO Anye, HU Yang, LI Bing. Research and application on anchor cable reinforcement of distressed zone in sidewall along roadway under dynamic disturbance[J]. Coal Science & Technology Magazine, 2021, 42(2): 39-46. [12] 兰红,郑禄林,陈庆港,等.动静载荷下含软弱夹层巷道围岩稳定性分析[J].煤矿安全,2022,53(12):241-246. LAN Hong, ZHENG Lulin, CHEN Qinggang, et al. Stability analysis of roadway surrounding rock with weak interlayer under dynamic and static loads[J]. Safety in Coal Mines, 2022, 53(12): 241-246. [13] 封雨捷.动力扰动下深部巷道围岩破裂过程与动态失稳特征研究[D].徐州:中国矿业大学,2022. [14] 郭鹏慧.动载触发高静载盘区大巷力-能响应特征及失稳冲击机理[D].淮南:安徽理工大学,2022. [15] 孙泽权,蒋力帅,郭涛,等.动载扰动下复合顶板巷道围岩变形破坏特征[J].煤炭技术,2022,41(1):13 -19. SUN Zequan, JIANG Lishuai, GUO Tao, et al. Characteristics of surrounding rock deformation and failure of composite roof roadway under dynamic load disturbance[J]. Coal Technology, 2022, 41(1): 13-19. [16] 熊藤根,常聚才,史文豹,等.不同强度动载叠加下巷道围岩力学特征数值模拟研究[J].矿业研究与开发,2021,41(7):118-122. XIONG Tenggen, CHANG Jucai, SHI Wenbao, et al. Numerical simulation on mechanical characteristics of roadway surrounding rock under superimposed dynamic load with different steengths[J]. Mining Research and Development, 2021, 41(7): 118-122. [17] 马金宝,马骥,王胜,等.考虑多次冲击动载作用的深部煤巷支护参数优化[J].煤矿安全,2017,48(7):212-215. MA Jinbao, MA Ji, WANG sheng, et al. Optimization of supporting parameters for deep coal roadway considering repeated impact dynamic load[J]. Safety in Coal Mines, 2017, 48(7): 212-215. [18] 徐学锋.煤层巷道底板冲击机理及其控制研究[D].徐州:中国矿业大学,2011. [19] LU Caiping, DOU Linming, CAO Anye, et al. Research on microseismic activity rules in Sanhejian Coal Mine[J]. Journal of Coal Science & Engineering, 2008, 14(3): 373-377. [20] 陆菜平.组合煤岩的强度弱化减冲原理及其应用[D].徐州:中国矿业大学,2008. [21] 何江.煤矿采动动载对煤岩体的作用及诱冲机理研究[D].徐州:中国矿业大学,2013.
计量
  • 文章访问数:  39
  • HTML全文浏览量:  4
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 网络出版日期:  2023-08-30
  • 刊出日期:  2023-08-22

目录

    /

    返回文章
    返回