煤自然发火智能监测与早期预警关键技术
Key technologies for intelligent monitoring and early warning of coal spontaneous combustion
-
摘要: 煤自燃灾害是煤炭开采过程中主要的灾害之一。对煤自燃多源立体参数的获取、数据的深度分析、数学模型的建立以及精准预测是煤矿企业生产的基本保障。从煤自燃多源立体参数的监测手段、数学分析和预测方法3个方面综述了煤自燃监测预警的研究和应用的基本现状,并进一步展望了煤自燃智能监测及精准预测未来发展方向。Abstract: Coal spontaneous combustion disaster is one of the main disasters in the process of coal mining. The acquisition of multi-source three-dimensional parameters of spontaneous coal combustion, the in-depth analysis of data, the establishment of mathematical models and accurate prediction are the basic guarantee for the production of coal mining enterprises. This paper summarizes the basic status of research and application of coal spontaneous combustion monitoring and early warning from three aspects: monitoring methods, mathematical analysis and prediction methods of coal spontaneous combustion multi-source three-dimensional parameters, and further prospects the future development direction of coal spontaneous combustion intelligent monitoring and accurate prediction.
-
-
[1] 袁亮.我国煤炭工业高质量发展面临的挑战与对策[J].中国煤炭,2020,46(1):6-12. YUAN Liang. Challenges and countermeasures for high quality development of China’s coal industry[J]. Chinese Coal, 2020, 46(1): 6-12.
[2] 邓军,白祖锦,肖旸,等.煤自燃灾害防治技术现状与挑战[J].煤矿安全,2020,51(10):118-125. DENG Jun, BAI Zujin, XIAO Yang, et al. Present situation and challenge of coal spontaneous combustion disasters prevention and control technology[J]. Safety in Coal Mines, 2020, 51(10): 118-125.
[3] 郭庆.采空区煤自燃预警技术及应用研究[D].北京,中国矿业大学(北京),2021. [4] 王德明.矿井火灾学[M].徐州:中国矿业大学出版社.2008. [5] 高建.矿井空区漏风条件下的分区通风系统研究[D].西安:西安建筑科技大学,2021. [6] 翟小伟,尚博,郑增荣,等.浅埋近距离煤层相邻对向开采工作面煤自燃防治技术与应用[J].煤矿安全,2021,52(6):98-103. ZHAI Xiaowei, SHANG Bo, ZHENG Zengrong, et al. Prevention and control technology of coal spontaneous combustion in adjacent opposite mining face of shallow and close coal seam and its application[J]. Safety in Coal Mines, 2021, 52(6): 98-103.
[7] 张箫剑.基于光纤测温技术的采空区煤温监测研究[D].淮南:安徽理工大学,2015. [8] 国家安全生产监督管理总局.煤矿安全规程[M].北京:煤炭工业出版社,2022. [9] 王丹.RVM在煤自燃预测中的应用研究[J].煤,2022, 31(4):1-5. WANG Dan. Application research of RVW in prediction of coal spontaneous combustion[J]. Coal, 2022, 31(4): 1-5.
[10] 李颖,朱令起.优选煤自燃预测定量指标研究[J].河北能源职业技术学院学报,2021,21(4):57-58. LI Ying, ZHU Lingqi. Study on optimization of quantitative index for prediction of coal spontaneous combustion[J]. Journal of Hebei Energy College of Vocation and Technology, 2021, 21(4): 57-58.
[11] 孙继平,孙雁宇.矿井火灾监测与趋势预测方法研究[J].工矿自动化,2019,45(3):1-4. SUN Jiping, SUN Yanyu. Research on methods of mine fire monitoring and trend prediction[J]. Industrial and Mining Automation, 2019, 45(3): 1-4.
[12] 秦波涛,仲晓星,王德明,等.煤自燃过程特性及防治技术研究进展[J].煤炭科学技术,2021,49(1):66. QIN Botao, ZHONG Xiaoxing, WANG Deming, et al. Research progress of coal spontaneous combustion process characteristics and prevention technology[J]. Coal Science and Technology, 2021, 49(1): 66.
[13] 颜试.煤矿火灾分布式光纤温度监测预警系统[J].铜陵学院学报,2010,9(6):69-70. [14] 刘晨,谢军,辛林.煤自燃预测预报理论及技术研究综述[J].矿业安全与环保,2019,46(3):92-95. LIU Chen, XIE Jun, XIN Lin. Review of theory and technology research on prediction of coal spontaneous combustion[J]. Mining Safety & Environmental Protection, 2019, 46(3): 92-95.
[15] Onifade M, Genc B, Bada S. Spontaneous combustion liability between coal seams: A thermogravimetric study[J]. International Journal of Mining Science and Technology, 2020(6): 2095-2686. [16] 费金彪.煤自燃阶段判定理论与分级预警方法研究[D].西安:西安科技大学,2019. [17] 赵晓虎,孙鹏帅,杨眷,等.应用于煤自燃指标气体体积分数浓度在线监测系统[J].煤炭学报,2021,46(S1):319-327. ZHAO Xiaohu, SUN Pengshuai, YANG Juan, et al. Online monitoring system of index gases concentration applied to coal spontaneous combustion[J]. Journal of China Coal Society, 2021, 46(S1): 319-327.
[18] 高峰,王文才,李建伟,等.浅埋煤层群开采复合采空区煤自燃预测[J].煤炭学报,2020,45(S1):336. GAO Feng, WANG Wencai, LI Jianwei, et al. Prediction of coal spontaneous combustion in compound gob of shallow seam group mining[J]. Journal of China Coal Society, 2020, 45(S1): 336.
[19] 王连聪,梁运涛.煤无氧升温中CO产生及变化规律的光谱分析[J].煤炭学报,2017,42(7):1790-1794. WANG Liancong, LIANG Yuntao. Spectral analysis on laws of generation and variability of CO during oxygen-free programmed temperature of coal[J]. Journal of China Coal Society, 2017, 42(7): 1790-1794.
[20] 郭一铭,何启林.煤层自燃发火指标气体的选择及预测预报应用[J].安徽理工大学学报(自然科学版),2019,39(3):60. GUO Yiming, HE Qilin. Selection and application of forecasting of signal gases for coal seam spontaneous combustion[J]. Journal of Anhui University of Science and Technology(Natural Science), 2019, 39(3): 60.
[21] 梁运涛.煤炭自然发火预测预报的气体指标法[J].煤炭科学技术,2008,36(6):5-8. LIANG Yuntao. Gas index method to predict coal spontaneous combustion[J]. Coal Science and Technology, 2008, 36(6): 5-8.
[22] 陈晓坤.煤自燃多源信息融合预警研究[D].西安:西安科技大学,2012. [23] 贾传志,丁佳丽.基于灰色关联分析的煤自燃预测指标可信度研究[J].内蒙古煤炭经济,2018(12):4. JIA Chuanzhi, DING Jiali. Reliability prediction of coal spontaneous combustion based on grey correlation analysis[J]. Inner Mongolia Coal Economy, 2018(12): 4.
[24] 赵琳琳,温国锋,邵良杉.不均衡数据下的采空区煤自燃PCA-Ada Boost 预测模型[J].中国安全科学学报,2018,28(3):74-78. ZHAO Linlin, WEN Guofeng, SHAO Liangshan. PCA-Ada boost model for predicting coal spontaneous combustion in caving zone with imbalanced data[J]. China Safety Science Journal, 2018, 28(3): 74-78.
[25] 王福生,王建涛,顾亮,等.煤自燃预测预报多参数指标体系研究[J].中国安全生产科学技术,2018,14(6):45-51. WANG Fusheng, WANG Jiantao, GU Liang, et al. Study on multi-parameter index system for prediction and forecast of coal spontaneous combustion[J]. Journal of Safety Science and Technology, 2018, 14(6): 45-51.
[26] 郑学召,童鑫,郭军,等.煤矿智能监测与预警技术研究现状与发展趋势[J].工矿自动化,2020,46(6):35-40. ZHENG Xuezhao, TONG Xin, GUO Jun, et al. Research status and development trend of intelligent monitoring and early warning technology in coal mines[J]. Industry and Mining Automation, 2020, 46(6): 35-40.
[27] 余明高,周世轩,褚廷湘,等.立体瓦斯抽采条件下煤自燃预测预报标志气体的优化选择[J].河南理工大学学报(自然科学版),2012,31(1):1-5. YU Minggao, ZHOU Shixuan, CHU Tingxiang, et al. The optimal selection of sign gas to predict coal spontaneous combustion under the condition of stereo gas extraction[J]. Journal of Henan Polytechnic University(Natural Science), 2012, 31(1): 1-5.
[28] Chu Tao, Li Peng, Chen Yun. Risk assessment of gas control and spontaneous combustion of coal under gas drainage of an upper tunnel[J]. International Journal of Mining Science and Technology, 2019(3): 491-498. [29] 王建涛,王福生.煤自燃分阶段灰色加权预测预报决策系统[C]//第30届全国高校安全科学与工程学术年会暨第12届全国安全工程领域专业学位研究生教育研讨会论文集.北京:公共安全科学技术学会,2019:405. [30] 王鑫阳,LUO Yi,张勋,等.基于绝热氧化试验结果的煤自燃预测模型研究[J].中国安全科学学报,2017, 27(6):67-72. WANG Xinyang, LUO Yi, ZHANG Xun, et al. A study on predicting model for self-heating behavior of coal based on adiabatic oxidation experiment[J]. China Safety Science Journal, 2017, 27(6): 67-72.
[31] WANG Junfeng, ZHANG Yulong, XUE Sheng, et al. Assessment of spontaneous combustion status of coal based on relationships between oxygen consumption and gaseous product emissions[J]. Fuel Processing Technology, 2018, 179: 60-71. [32] 文虎,赵向涛,王伟峰,等.不同煤体自燃指标性气体函数模型特征分析[J].煤炭转化,2020,43(1):16. WEN Hu, ZHAO Xiangtao, WANG Weifeng, et al. Analysis on characteristic of indicator gases of spontaneous combustion of different coals[J]. Coal Conversion, 2020, 43(1): 16.
[33] 王磊,武术静,李长青.基于修正灰色马尔科夫模型的煤自燃预测[J].计算机仿真,2014,31(11):416. WANG Lei, WU Wujing, LI Changqing. Coal spontaneous combustion prediction based on Grey-markov model[J]. Computer Simulation, 2014, 31(11): 416.
[34] 高凯.基于支持向量的煤自燃预测方法研究[D].西安:西安科技大学,2012. [35] 邓军,周少柳,马砺,等.基于PCA-PSOSVM的煤自燃程度预测研究[J].矿业安全与环保,2016,43(5):27-31. DENG Jun, ZHOU Shaoliu, MA Li, et al. Research on prediction method of coal spontaneous combustion degree based on PCA-PSOSVM[J]. Mining Safety & Environmental Protection, 2016, 43(5): 27-31.
[36] 邓军,雷昌奎,曹凯,等.采空区煤自燃预测的随机森林方法[J].煤炭学报,2018,43(10):2800-2808. DENG Jun, LEI Changkui, CAO Kai, et al. Random forest method for predicting coal spontaneous combustion in gob[J]. Journal of China Coal Society, 2018, 43(10): 2800-2808.
[37] 温荣岩.基于改进粒子群小波神经网络的煤自燃预测系统[D].北京:中国矿业大学(北京),2019. [38] 梁运涛,王树刚,林琦,等.煤炭自然发火的介尺度现象分析及建模[J].中国矿业大学学报,2017,46(5):979-987. LIANG Yuntao, WANG Shugang, LIN Qi, et al. Analysis and modeling of mesoscale phenomenon on coal spontaneous combustion[J]. Journal of China University of Mining & Technology, 2017, 46(5): 979-987.
[39] 王永湘.利用指标气体预测预报煤矿自燃火灾[J].煤矿安全,2001,32(6):15-16. WANG Yongxiang. Predication and forecasting coal mine spontaneous combustion by using index-gases[J]. Safety in Coal Mines, 2001, 32(6): 15-16.
[40] 张典,冯海龙.不同风量下煤自燃早期预警指标实验研究[J].内蒙古科技与经济,2022(1):90-93. [41] 梁彦波,江宁,赵金海,等.采空区破碎岩石承压变形及分形特征研究[J].矿业研究与开发,2019,39(5):60-64. LIANG Yanbo, JIANG Ning, ZHAO Jinhai, et al. Study on compressive deformation and fractal characteristics of broken rocks in goaf[J]. Mining Research and Development, 2019, 39(5): 60-64.
-
期刊类型引用(7)
1. 崔忠麒,徐娅煊,苏皓. 基于Stacking-SHAP的煤自燃倾向性影响因素研究. 煤炭技术. 2025(01): 150-155 . 百度学术
2. 孙吉平. 基于SF_6质量浓度变化特征的煤矿火灾状态识别分析. 山西煤炭. 2025(01): 42-49 . 百度学术
3. 曹富荣,吴学松,李军,付天予,刘佳伟,李志辉,杨小彬. 基于机器学习的多气体指标煤自燃温度预测. 煤矿安全. 2024(04): 106-113 . 本站查看
4. 樊永勇,王新瑞,张春雷. 急倾斜特厚煤层分段采空区低温氮气防灭火技术研究与实践. 能源与环保. 2024(11): 254-262 . 百度学术
5. 武泽伟,汪伟,祁云,梁然. 采空区遗煤自燃影响因素分析及风险评价. 山西大同大学学报(自然科学版). 2023(04): 116-122 . 百度学术
6. 孔彪,朱思想,胡相明,杨涛,赵旭帅,斐达特,万姝含. 基于改进鲸鱼算法优化BP神经网络的煤自燃预测研究. 矿业安全与环保. 2023(05): 30-36 . 百度学术
7. 陈鹏燕,周春山,程熙宇,田雅琪. 全物理交联Al~(3+)-CMC/MMT-PAM双网络凝胶的制备及性能. 矿业研究与开发. 2023(11): 143-149 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 90
- HTML全文浏览量: 2
- PDF下载量: 79
- 被引次数: 9