孤岛综放工作面水体探测及突水危险性研究
Research on water body detection and water inrush risk of isolated full-mechanized working face
-
摘要: 以济煤23101孤岛工作面为研究对象,运用力学模型分析、多种经验公式计算及数值模拟方法分析孤岛工作面及相邻工作面采动前后覆岩裂隙发育及贯通性,结合调查资料、地面和井下瞬变电磁探测结果研究孤岛工作面上方水体及相邻采空区积水赋存规律,并采用钻探方法针对理论、物探所分析的采空区积水进行现场验证。结果表明:23101工作面上覆岩层存在顶板裂隙水,其上方相邻济源三矿21051工作面存在较多老空水;当23101工作面未回采时,其下方相邻23001工作面平均导水裂隙发育高度为58.43 m、其上方相邻济源三矿23051工作面平均导水裂隙发育高度为57.31 m,且两者并未贯通;当23101工作面回采后,23101工作面裂隙发育高度平均为60.94 m,可与上方相邻济源三矿21051工作面断裂带贯通,21051老空水可威胁到23101工作面正常回采。因此,对23101工作面顶板裂隙水及相邻工作面老空水进行超前排放是保障安全回采的必要措施。Abstract: This paper takes Jimei 23101 isolated working face as an example, uses mechanical model analysis, multiple empirical formula calculations and numerical simulation methods to analyze the development and penetration of overlying rock fissures before and after the mining of isolated working faces and adjacent working faces. Combining survey data, ground and underground transient electromagnetic detection results are used to analyze the occurrence of water accumulation in the water above the isolated working face and adjacent goaves, and using drilling methods to verify on-site water accumulation in the goaf analyzed by theory and geophysical prospecting. The results of geophysical, geochemical, and drilling show that there is a roof fissure in the overlying strata of the 23101 working face, and a lot of gob water in the 21051 working face of the adjacent Jiyuan No.3 mine above it; when the 23101 working face is not mined, the average development height of water-conducting fissures in the adjacent 23001 working face below it is 58.43 m, and the average development height of water-conducting fissures in the 23051 working face of the adjacent Jiyuan No.3 mine above it is 57.31 m. And the two are not connected; when the 23101 working face is stopped, the average height of cracks in the 23101 working face is 60.94 m, it can be connected to the fissure zone of 21051 working face of the adjacent Jiyuan No.3 mine above, the gob water of the 21051 working face can threaten the normal mining of the 23101 working face. Therefore, the advanced discharge of roof fissure water in 23101 working face and old goaf water in the corresponding working face is a necessary measure to ensure safe mining.
-
-
[1] 国家安全生产监督管理总局,国家煤矿安全监察局.煤矿安全规程[M].北京:煤炭工业出版社,2016. [2] 国家煤矿安全监察局.煤矿防治水细则[M].北京:煤炭工业出版社,2018. [3] 侯宪港,杨天鸿,李振拴,等.山西省老空水害类型及主要特征分析[J].采矿与安全工程学报,2020,37(5):1009-1018. HOU Xiangang, YANG Tianhong, LI Zhenshuan, et al. Types and main characteristics of old goaf water disaster in Shanxi Province[J]. Journal of Mining & Safety Engineering, 2020, 37(5): 1009-1018.
[4] V S Vutukuri, R N Singh. Mine inundation case histories[J]. Mine Water and the Environment, 1995, 14(1):107-130. [5] Chunfang Jiang, Xubo Gao, Baojun Hou, et al. Occurrence and environmental impact of coal mine goaf water in karst areas in China[J]. Journal of Cleaner Production, 2020, 275: 123813. [6] 程建远,马宝军.美国煤矿老空区探测的经验与启示[J].中国安全生产科学技术,2014,10(S1):224-228. CHENG Jianyuan, MA Baojun. The experience of goaf detection in USA coal mine and its enlightenment[J]. Journal of Safety Science and Technology, 2014, 10(S1): 224-228.
[7] 武强.我国矿井水防控与资源化利用的研究进展、问题和展望[J].煤炭学报,2014,39(5):795-805. WU Qiang. Progress, problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society, 2014, 39(5): 795-805.
[8] 李晓龙,穆鹏飞.复采条件下远距离截引老空水技术[J].煤矿安全,2020,51(12):79-84. LI Xiaolong, MU Pengfei. Technology of long-distance draining goaf water under the condition of repeated mining[J]. Safety in Coal Mines, 2020, 51(12): 79-84.
[9] 靳德武,刘英锋,刘再斌,等.煤矿重大突水灾害防治技术研究新进展[J].煤炭科学技术,2013,41(1):25. JIN Dewu, LIU Yingfeng, LIU Zaibin, et al. New progress of study on major water inrush disaster prevention and control technology in coal mine[J]. Coal Science and Technology, 2013, 41(1): 25-29.
[10] 薛建坤,王皓,赵春虎,等.鄂尔多斯盆地侏罗系煤田导水裂隙带高度预测及顶板充水模式[J].采矿与安全工程学报,2020,37(6):1222-1230. XUE Jiankun, WANG Hao, ZHAO Chunhu, et al. Prediction of the height of water-conducting fracture zone and water-filling model of roof aquifer in Jurassic coalfield in Ordos Basin[J]. Journal of Mining & Safety Engineering, 2020, 37(6): 1222-1230.
[11] 周英,南华.特厚易自燃煤层综放开采采空区“三带”划分研究[J].中国煤炭,2006,27(2):32-34. ZHOU Ying, NAN Hua. Research for the“division of three cuts” in combined mining goaf of very thick self-ignition coal seam[J]. China Coal, 2006, 27(2): 32-34.
[12] 孟祥军,林海飞,王超,等.巨厚煤层综放工作面覆岩“三带”演化特征[J].煤矿安全,2021,52(6):85-90. MENG Xiangjun, LIN Haifei, WANG Chao, et al. Evolution characteristics of overburden three zones in fully-mechanized caving face in huge thick coal seam[J]. Safety in Coal Mines, 2021, 52(6): 85-90.
[13] 秦洪岩,题正义,李洋,等.基于板壳理论的充填开采断裂带高度计算方法研究[J].煤炭工程,2017,49(11):81-84. QIN Hongyan, TI Zhengyi, LI Yang, et al. Calculation method for height of mining-induced fault zone based on plate theory in stowing mining[J]. Coal Engineering, 2017, 49(11): 81-84.
[14] 乔宁,丁亮斌.上覆不明采空区突水危险性分析及积水范围探测[J].煤炭科学技术,2017,45(8):48-54. QIAO Ning, DING Liangbin. Analysis on water inrush risk and detection of accumulation water scope in overlying unknown gob[J]. Coal Science and Technology, 2017, 45(8): 48-54.
[15] Li D, Tian Z, Ma Y, et al. Application of Grounded Electrical Source Airborne Transient Electromagnetic (GREATEM) System in Goaf Water Detection[J]. Journal of Environmental & Engineering Geophysics, 2019, 24(3): 387-397. [16] Chang J, Su B, Malekian R, et al. Detection of water-filled mining goaf using mining transient electromagnetic method[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 2977-2984. [17] Fu Z, Kang J, Qiu D W. In situ measurement of water accumulation in overlying goaf of coal mine-atransient electromagnetic-based study[J]. Arabian Journal of Geosciences, 2021, 14(5): 406. [18] 薛国强,李海,陈卫营,等.煤矿含水体瞬变电磁探测技术研究进展[J].煤炭学报,2021,46(1):77-85. XUE Guoqiang, LI Hai, CHEN Weiying, et al. Progress of transient electromagnetic detection technology for water-bearing bodies in coal mines[J]. Journal of China Coal Society, 2021, 46(1): 77-85.
[19] 徐慧,牟义,李江华,等.河流区域露-井联采矿区水文地质综合勘查技术研究[J].煤炭科学技术,2020, 48(11):191-198. XU Hui, MU Yi, LI Jianghua, et al. Research on comprehensive hydrogeological exploration technology in surface-underground combined mining area of river basin[J]. Coal Science and Technology, 2020, 48(11): 191-198.
[20] 潘国营,轩吉善,岳保祥,等.基于GSM水位遥测系统的大型放水与示踪联合试验[J].河南理工大学学报(自然科学版),2007(2):152-155. PAN Guoying, XUAN Jieshan, YUE Baoxiang, et al. The large dewatering test and tracing experiment based on GSM water level remote sensing system[J]. Journal of Henan Polytechnic University(Natural Science) , 2007(2): 152-155.
[21] 卜昌森,张希诚.综合水文地质勘探在煤矿岩溶水害防治中的应用[J].煤炭科学技术,2001,29(3):32. BU Changsen, ZHANG Xicheng, et al. Application of comprehensive hydrological exploration to mine karst water control[J]. Coal Science and Technology, 2001, 29(3): 32.
[22] 刘明军,李晓龙,杨忠,等.复杂地质条件下远距离定点探放老空水技术[J].煤矿安全,2020,51(7):86. LIU Mingjun, LI Xiaolong, YANG Zhong, et al. Long-distance fixed point detection and drainage technology of goaf water under complex geological conditions[J]. Safety in Coal Mines, 2020, 51(7): 86.
[23] 姬亚东.基于综合分析法的疑似封闭不良钻孔探查[J].煤矿安全,2021,52(8):83-88. JI Yadong. Exploration of suspected poorly sealed borehole based on comprehensive analysis method[J]. Safety in Coal Mines, 2021, 52(8): 83-88.
-
期刊类型引用(4)
1. 王振宇,岳高伟,蔺海晓,李敏敏. 单轴冲击荷载下煤体损伤及破坏特征分析. 煤矿安全. 2024(02): 10-18 . 本站查看
2. 张敏锐. 孤岛工作面双侧采空区积水探放技术应用. 陕西煤炭. 2024(03): 119-122 . 百度学术
3. 郑战伟,王国睦,李沛涛,窦银锋,吴振玉. 孤岛综放工作面底板突水综合治理技术研究. 煤炭科技. 2023(04): 103-107+111 . 百度学术
4. 郭向阳,刘宏,李军文. 大巷煤柱工作面巷道掘进及防治水技术. 煤炭科技. 2022(04): 134-141 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 48
- HTML全文浏览量: 0
- PDF下载量: 17
- 被引次数: 4