• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

受振粒煤瓦斯扩散特性实验研究

陈学习, 金霏阳, 申茂良, 高泽帅, 张虎

陈学习, 金霏阳, 申茂良, 高泽帅, 张虎. 受振粒煤瓦斯扩散特性实验研究[J]. 煤矿安全, 2022, 53(10): 9-14.
引用本文: 陈学习, 金霏阳, 申茂良, 高泽帅, 张虎. 受振粒煤瓦斯扩散特性实验研究[J]. 煤矿安全, 2022, 53(10): 9-14.
CHEN Xuexi, JIN Feiyang, SHEN Maoliang, GAO Zeshuai, ZHANG Hu. Experimental study on gas diffusion characteristics of vibrating granular coal[J]. Safety in Coal Mines, 2022, 53(10): 9-14.
Citation: CHEN Xuexi, JIN Feiyang, SHEN Maoliang, GAO Zeshuai, ZHANG Hu. Experimental study on gas diffusion characteristics of vibrating granular coal[J]. Safety in Coal Mines, 2022, 53(10): 9-14.

受振粒煤瓦斯扩散特性实验研究

Experimental study on gas diffusion characteristics of vibrating granular coal

  • 摘要: 为了探究机械振动对粒煤瓦斯扩散特性的影响,建立振动-吸附-解吸实验系统,选取桧树亭矿1~3 mm和0.25~0.3 mm粒径的贫煤,开展煤样瓦斯解吸-扩散实验,采用瓦斯气体扩散模型进行分析振动前后不同粒径的煤样的解吸-扩散情况。结果表明:施加振动能够提升粒煤的瓦斯扩散量和扩散速度,初始有效扩散系数在振动过程中也得到了提升。通过对比发现,小粒径煤样具有相对较小的扩散系数,在解吸前期拥有较大的扩散速度,振动对其扩散特性的影响较大。分析认为,一方面,小粒径煤样的振动作用的增强,导致振动产生的外力作用越明显,进而加剧了瓦斯扩散程度;另一方面,粒径大的煤样具有更大的表面积,与小粒径煤样相比,能够吸附的瓦斯更多,因此初始扩散速度较大。
    Abstract: In order to explore the influence of mechanical vibration on the gas diffusion characteristics of granular coal, the self-developed vibration-gas adsorption-desorption experimental platform was used to conduct the gas desorption-diffusion experiments of coal samples with different particle sizes before and after vibration. The dynamic diffusion coefficient model was used to select the lean coal of 1-3 mm and 0.25-0.3 mm in Guishuting Mine, respectively. The gas desorption-diffusion experiment of coal samples was carried out, and the vibration of coal samples with different particle sizes before and after was compared. The results show that the application of vibration can increase the gas diffusion amount and diffusion speed of granular coal, and the initial effective diffusion coefficient of gas desorption is also improved. The initial effective diffusion coefficient of small particle size coal sample is smaller than that of large particle size coal sample, but the early diffusion rate is larger, and the vibration has a greater impact on the diffusion characteristics. It is pointed out that, on the one hand, the enhancement of vibration effect of small-size coal samples leads to more obvious external force generated by vibration, which further aggravates the degree of gas diffusion. On the other hand, coal samples with large particle size have larger surface area, and can absorb more gas than coal samples with small particle size, so the initial diffusion rate is larger.
  • [1] 周世宁,林柏泉.煤矿瓦斯动力灾害防治理论及控制技术[M].北京:科学出版社,2007.
    [2] Shen M L, Chen X X, Xu Y. Effect of Mechanical Vibration with Different Frequencies on Pore Structure and Fractal Characteristics in Lean Coal[J]. Shock and Vibration, 2021, 2021: 1-14.
    [3] 聂百胜,杨涛,李祥春,等.煤粒瓦斯解吸扩散规律实验[J].中国矿业大学学报,2013,42(6):975-981.

    NIE Baisheng, YANG Tao, LI Xiangchun, et al. Research on diffusion of methane in coal particles[J]. Journal of China University of Mining & Technology, 2013, 42(6): 975-981.

    [4] 聂百胜,何学秋,王恩元.瓦斯气体在煤层中的扩散机理及模式[J].中国安全科学学报,2000,10(6):27.

    NIE Baisheng, HE Xueqiu, WANG Enyuan. Mechanism and modes of gas diffusion in coal seams[J]. China Safety Science Journal, 2000, 10(6): 27.

    [5] 刘炎杰,苏恒.粒径、水分对煤中甲烷的吸附-扩散实验研究[J].煤,2015,24(4):12-14.

    LIU Yanjie, SU Heng. Experimental study of particle size, moisture of coal methane adsorption-diffusion[J]. Coal, 2015, 24(4): 12-14.

    [6] 刘彦伟,刘明举.粒度对软硬煤粒瓦斯解吸扩散差异性的影响[J].煤炭学报,2015,40(3):579-587.

    LIU Yanwei, LIU Mingju. Effect of particle size on difference of gas desorption and diffusion between soft coal and hard coal[J]. Journal of China Coal Society, 2015, 40(3): 579-587.

    [7] 曹垚林,仇海生.碎屑状煤芯瓦斯解吸规律研究[J].中国矿业,2007,16(12):119-123.

    CAO Yaolin, QIU Haisheng. Gas desorption law of clastic coal core study[J]. China Mining Magazine, 2007, 16(12): 119-123.

    [8] 迟雷雷,王启飞,王菲茵,等.煤的瓦斯解吸扩散规律实验研究[J].煤矿安全,2013,44(12):1-3.

    CHI Leilei, WANG Qifei, WANG Feiyin, et al. Coal gas desorption and diffusion laws and its experimental study[J]. Safety in Coal Mines, 2013, 44(12): 1-3.

    [9] 徐超,王硕,郭海军,等.煤中瓦斯非稳态扩散特征模型及实验验证[J].煤矿安全,2018,49(5):1-5.

    XU Chao, WANG Shuo, GUO Haijun, et al. Unsteady-state diffusion characteristics model of gas in coal and experimental verification[J]. Safety in Coal Mines, 2018, 49(5): 1-5.

    [10] 周市伟,张玉贵,雷东记.煤粒瓦斯初始扩散系数及其影响因素[J].煤矿安全,2016,47(10):1-4.

    ZHOU Shiwei, ZHANG Yugui, LEI Dongji. Gas initial diffusion coefficient and its influencing factors in coal particle[J]. Safety in Coal Mines, 2016, 47(10): 1-4.

    [11] Chen X, Zhang L, Shen M. Experimental research on desorption characteristics of gas-bearing coal subjected to mechanical vibration[J]. Energy Exploration & Exploitation, 2020, 38(5): 1454-1466.
    [12] Naderi K, Babadagli T. Influence of intensity and frequency of ultrasonic waves on capillary interaction and oil recovery from different rock types[J]. Ultrasonics Sonochemistry, 2010, 17(3): 500-508.
    [13] Mohammadian E, Junin R, Rahmani O, et al. Effects of sonication radiation on oil recovery by ultrasonic waves stimulated water-flooding[J]. Ultrasonics, 2013, 53(2): 607-614.
    [14] Wang HY, Xia BW, Lu YY, et al. Experimental study on sonic vibrating effects of cavitation water jets and its promotion effects on coalbed methane desorption[J]. Fuel, 2016, 185: 468-477.
    [15] Ni GH, Dong K, Li S, et al. Gas desorption characteristics effected by the pulsating hydraulic fracturing in coal[J]. Fuel, 2019, 236: 190-200.
    [16] Li Z, Wang S, Liu Y, et al. Mechanism of gas diffusion in tectonic coal based on a diffusion model with dynamic diffusion coefficient[J]. Journal of China University of Mining and Technology, 2015, 44(5): 836-842.
    [17] LI Zhiqing, LIU Yong, XU Yanpeng. Gas diffusion mechanism in multi-scale pores of coal particles and new diffusion model of dynamic diffusion coefficient[J]. Journal of China Coal Society, 2016b, 41(3): 633.
    [18] 李祥春,李忠备,张良,等.不同煤阶煤样孔隙结构表征及其对瓦斯解吸扩散的影响[J].煤炭学报,2019, 44(S1):142-156.

    LI Xiangchun, LI Zhongbei, ZHANG Liang, et al. Pore structure characterization of various rank coals and its effect on gas desorption and diffusion[J]. Journal of China Coal Society, 2019, 44(S1): 142-156.

    [19] 安丰华,袁宇,陈向军.基于瓦斯解吸率的煤中瓦斯含量测定新方法[J].煤矿安全,2019,50(9):34-37.

    AN Fenghua, YUAN Yu, CHEN Xiangjun. A new method for gas content determination based on gas desorption ratio[J]. Safety in Coal Mines, 2019, 50(9): 34-37.

    [20] 薛洪来,关城,付帅,等.含瓦斯煤粒前期扩散理论模型及解析解[J].煤矿安全,2018,49(3):164-167.

    XUE Honglai, GUAN Cheng, FU Shuai, et al. Theoretical model of early diffusion in coal particles containing methane and its analytical solution[J]. Safety in Coal Mines, 2018, 49(3): 164-167.

    [21] Shen M, Chen X. Influence rules and mechanisms of mechanical vibration at different frequencies on dynamic process of gas diffusion from coal particles[J]. Energy Exploration & Exploitation, 2021, 39(6): 1939.
    [22] 张宏图,郝玉双,魏建平.颗粒煤负压解吸扩散特征参数研究[J].煤矿安全,2020,51(10):191-195.

    ZHANG Hongtu, HAO Yushuang, WEI Jianping. Study on characteristic parameters of particulate coal gas desorption and diffusion under negative pressure environment[J]. Safety in Coal Mines, 2020, 51(10): 191-195.

    [23] 张虎,陈学习,吉丹妮,等.振动作用下煤样解吸瓦斯特性测试[J].煤矿安全,2016,47(8):107-109.

    ZHANG Hu, CHEN Xuexi, JI Danni, et al. Testing of gas desorption characteristics of coal sample under vibration effect[J]. Safety in Coal Mines, 2016, 47(8): 107-109.

    [24] Fedorchenko IA, Fedorov AV. Gas-dynamic stage of the coal and gas outburst with allowance for desorption[J]. Journal of Mining Science, 2012, 48(1): 15-26.
计量
  • 文章访问数:  28
  • HTML全文浏览量:  0
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 发布日期:  2022-10-19

目录

    /

    返回文章
    返回