煤与瓦斯突出过程中煤层及巷道温度时空演化规律
Spatial-temporal evolution law of temperature in coal seam and roadway during coal and gas outburst
-
摘要: 利用自主研制的多功能煤与瓦斯突出模拟试验系统,开展了不同瓦斯压力条件下煤与瓦斯突出模拟试验,对突出过程中煤层和巷道温度进行了全程监测。分析结果表明:①突出发生后,煤层瓦斯压力快速下降至大气压,煤层温度演化具有一定的滞后性,主要受控于吸附瓦斯的解吸和游离瓦斯的膨胀,呈现急速下降→快速升高→缓慢变化3阶段演化特征,吸附瓦斯压力2.0、0.85、0.35 MPa条件下,煤层温度下降量峰值分别为0.56、0.23、0.11 ℃,平均下降速率分别为0.042、0.015、0.008 ℃/s,即瓦斯压力越高,煤层温度下降量越大、下降速率越快,呈正相关关系;②巷道温度的变化同时受到抛出煤体解吸瓦斯、喷出瓦斯膨胀泄压、冲击波扰动以及与环境热交换等多种因素影响,表现为先短暂上升,随后立即大幅下降,最后升温至环境温度的演化趋势,3次试验中,巷道温度下降量峰值分别为3.19、2.41、1.09 ℃,平均下降速率分别为0.249、0.188、0.094 ℃/s;③煤层和巷道温度在时间演化上具有整体相似性,在变化幅度上具有显著差异性,突出煤体在巷道内的进一步破碎并大量解吸瓦斯,是巷道温度演化的主控因素,也是导致巷道温度下降量较大的主要原因。Abstract: A multifunctional outburst simulation test system was independently developed to monitor the temperature of the coal seam and roadway throughout the entire outburst process. Outburst simulation experiments under different gas pressures were carried out. The results show that: ① the coal seam gas pressure quickly drops to atmospheric pressure after outburst, however, the temperature evolution of coal seam has a certain lag, which is mainly controlled by the desorption of adsorbed gas and the expansion of free gas; three stages can be seen in the coal seam temperature evolution characteristics: quick decline, rapid increase, and slow change; peak values of coal seam temperature decline are 0.56, 0.23, and 0.11 ℃, respectively, and average decline rates are 0.042, 0.015, and 0.008 ℃/s when the adsorption gas pressure is 2.0, 0.85, and 0.35 MPa; the higher the gas pressure is, the greater the coal seam temperature decline and the faster the decline rate is, which is positively correlated; ② the change of the roadway temperature is simultaneously influenced by various factors such as desorption of gas from the outburst coal, expansion and pressure relief of ejected gas, shock wave disturbance and heat exchange with the environment, showing an evolutionary trend of a brief increase followed by an immediate and significant decrease and finally rise to the ambient temperature; in the three tests, the peak values of roadway temperature drop are 3.19, 2.41 and 1.09 °C, and the average decline rates are 0.249, 0.188 and 0.094 °C/s, respectively; ③ the coal seam and roadway temperatures have overall similarity in time evolution and significant difference in the magnitude of change; the further fragmentation of the outburst coal body in the roadway and the large amount of desorption of gas are the main controlling factors for the evolution of the roadway temperature and the main reason for the large amount of decrease in the roadway temperature.
-
-
[1] 韩颖,吕帅,张飞燕,等.煤与瓦斯突出模拟试验研究进展及展望[J].河南理工大学学报(自然科学版),2022,41(1):1-8. HAN Ying, LYU Shuai, ZHANG Feiyan, et al. Research progress and prospect of coal and gas outburst simulation experiments[J]. Journal of Henan Polyechnic Universiyy(Natural Science), 2022, 41(1): 1-8.
[2] 蒋承林,俞启香.煤与瓦斯突出机理的球壳失稳假说[J].煤矿安全,1995,26(2):17-25. [3] 张建民,李全生,张勇,等.煤炭深部开采界定及采动响应分析[J].煤炭学报,2019,44(5):1314. ZHANG Jianmin, LI Quansheng, ZHANG Yong, et al. Definition of deep mining and response analysis[J]. Journal of China Coal Society, 2019, 44(5): 1314.
[4] 蒋承林,俞启香,张超杰.煤巷突出预测敏感指标及临界值的实验室测定方法及应用[J].煤矿安全,2021,52(10):24-29. JIANG Chenglin, YU Qixiang, ZHANG Chaojie. Laboratory determination method and application of sensitive index and critical value for coal roadway outburst prediction[J]. Safety in Coal Mines, 2021, 52(10): 24-29.
[5] 张超林,许江,彭守建,等.煤与瓦斯突出物理模拟实验研究进展及展望[J].煤田地质与勘探,2018,46(4):28-34. ZHANG Chaolin, XU Jiang, PENG Shoujian, et al. Advances and prospects in physical simulation of coal and gas outburst[J]. Coal Geology & Exploration, 2018, 46(4): 28-34.
[6] 李希建,薛海腾,陈刘瑜,等.煤与瓦斯突出冲击波穿越门墙孔洞能量耗散规律及安全尺寸[J].煤炭学报,2021,46(12):3934. LI Xijian, XUE Haiteng, CHEN Liuyu, et al. Energy dissipation laws and hole safety dimensions of coal and gas outburst shock wave passing through door wall[J]. Journal of China Coal Society, 2021, 46(12): 3934.
[7] 秦恒洁,魏建平,李栋浩,等.煤与瓦斯突出过程中地应力作用机理研究[J].中国矿业大学学报,2021,50(5):933-942. QIN Hengjie, WEI Jianping, LI Donghao, et al. Research on the mechanism of in-situ stress in the process of coal and gas outburst[J]. Journal of China University of Mining & Technology, 2021, 50(5): 933-942.
[8] 王恩元,张国锐,张超林,等.我国煤与瓦斯突出防治理论技术研究进展与展望[J].煤炭学报,2022,47(1):297-322. WANG Enyuan, ZHANG Guorui, ZHANG Chaolin, et al. Research progress and prospect on theory and technology for coal and gas outburst control and protection in China[J]. Journal of China Coal Society, 2022, 47(1): 297-322.
[9] 唐巨鹏,郝娜,潘一山,等.基于声发射能量分析的煤与瓦斯突出前兆特征试验研究[J].岩石力学与工程学报,2021,40(1):31-42. TANG Jupeng, HAO Na, PAN Yishan, et al. Experimental study on precursor characteristics of coal and gas outbursts based on acoustic emission energy analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(1): 31-42.
[10] 张超林,王恩元,王奕博,等.近20年我国煤与瓦斯突出事故时空分布及防控建议[J].煤田地质与勘探,2021,49(4):134-141. ZHANG Chaolin, WANG Enyuan, WANG Yibo, et al. Spatial temporal distribution of outburst accidents from 2001 to 2020 in China and suggestions for prevention and control[J]. Coal Geology & Exploration, 2021, 49(4): 134-141.
[11] 卢守青,撒占友,张永亮,等.高阶原生煤和构造煤等量吸附热分析[J].煤矿安全,2019,50(4):169-172. LU Shouqing, SA Zhanyou, ZHANG Yongliang, et al. Analysis on isosteric adsorption heat of high-rank normal coal and deformed coal[J]. Safety in Coal Mines, 2019, 50(4): 169-172.
[12] 许江,杨孝波,周斌,等.突出过程中煤层瓦斯压力与温度演化规律研究[J].中国矿业大学学报,2019,48(6):1177-1187. XU Jiang, YANG Xiaobo, ZHOU Bin, et al. Study of evolution law of gas pressure and temperature in coal seam during outburst[J]. Journal of China University of Mining & Technology, 2019, 48(6): 1177-1187.
[13] 郝天轩,李帆,唐一举.不同瓦斯压力的煤在单轴受压条件下温度变化规律[J].中国矿业,2021,30(6):165-170. HAO Tianxuan, LI Fan, TANG Yiju. Temperature variation law of coal with different gas pressure under uniaxial compression[J]. China Mining Magazine, 2021, 30(6): 165-170.
[14] 李东,张学梅,郝静远,等.温度-压力-吸附和煤与瓦斯突出的关系探讨[J].煤矿安全,2020,51(5):21. LI Dong, ZHANG Xuemei, HAO Jingyuan, et al. Discussion on relationship between temperature-pressure-adsorption and coal and gas outburst[J]. Safety in Coal Mines, 2020, 51(5): 21.
[15] 刘志祥,冯增朝.煤体对瓦斯吸附热的理论研究[J].煤炭学报,2012,37(4):647-653. LIU Zhixiang, FENG Zengzhao. Theoretical study on adsorption heat of methane in coal[J]. Journal of China Coal Society, 2012, 37(4): 647-653.
[16] 郭立稳,俞启香,王凯.煤吸附瓦斯过程温度变化的试验研究[J].中国矿业大学学报,2000(3):65-67. GUO Liwen, YU Qixiang, WANG Kai. Experimental study on change in coal temperature during adsorbing gas[J]. Journal of China University of Mining & Technology, 2000(3): 65-67.
[17] 牛国庆,颜爱华,刘明举.煤吸附和解吸瓦斯过程中温度变化研究[J].煤炭科学技术,2003, 31(4):47. NIU Guoqing, YAN Aihua, LIU Mingju. Research on temperature changes during coal gas absorption and desorption[J]. Coal Science and Technology, 2003, 31(4): 47.
[18] 于宝海,王德明.煤层释放瓦斯膨胀能研究[J].采矿与安全工程学报,2013,30(5):773-777. YU Baohai, WANG Deming. Research on dilatation energy of released gas from coal seam[J]. Journal of Mining & Safety Engineering, 2013, 30(5): 773-777.
[19] 张超林,王恩元,王奕博,等.多功能煤与瓦斯突出模拟试验系统研制与应用[J].岩石力学与工程学报,2022,41(5):995-1007. ZHANG Chaolin, WANG Enyuan, WANG Yibo, et al. Development and application of multi-functional test system for coal and gas outburst simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 41(5): 995-1007..
[20] 王汉鹏,张庆贺,袁亮,等.含瓦斯煤相似材料研制及其突出试验应用[J].岩土力学,2015,36(6):1676. WANG Hanpeng, ZHANG Qinghe, YUAN Liang,et al. Development of a similar material for methane-bearing coal and its application to outburst experiment[J]. Rock and Soil Mechanics, 2015, 36(6): 1676.
[21] 朱墨然,熊云威,戴林超,等.突出煤相似材料综述及展望[J].煤矿安全,2019,50(4):173-176. ZHU Moran, XIONG Yunwei, DAI Linchao, et al. Research status and prospect of similar materials for coal and gas outburst[J]. Safety in Coal Mines, 2019, 50(4): 173-176.
-
期刊类型引用(3)
1. 唐巨鹏,张昕,潘一山. 煤与瓦斯突出物理模拟试验研究现状及展望. 岩石力学与工程学报. 2024(03): 521-541 . 百度学术
2. 张超林,王培仲,王恩元,许江,李忠辉,刘晓斐,彭守建. 我国煤与瓦斯突出机理70年发展历程与展望. 煤田地质与勘探. 2023(02): 59-94 . 百度学术
3. 张文柯. 基于AHP-MCS的煤与瓦斯突出主控因素分析. 能源技术与管理. 2023(05): 126-127 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 40
- HTML全文浏览量: 0
- PDF下载量: 7
- 被引次数: 4