基于微震与数值模拟的隐伏构造活化识别方法研究
Identification method of hidden structure reactivation based on microseismic and numerical simulation
-
摘要: 利用微震监测技术可实现对采场内岩层破断、断层/隐伏构造活化强度识别预测,而利用数值模拟技术可以实现对构造活化区应力场的反演再现,二者互为补充,可实现隐伏构造活化过程中应力扰动-应力集中-局部微破裂-应力迁移等由内因到表象的全程捕捉。基于淮河能源集团张集煤矿1612A工作面生产地质条件及所构建的微震监测系统,分析了采场内微震事件的时空分布特征,探究了微震活动与断层活化之间的关系,提出了以微震数据为基础结合数值模拟反演的隐伏构造活化识别方法。结果表明:煤层采场内的微震事件具有典型的时间阶段性和空间区域性分布特征;结合震源参数确定F1611A76~F1611A7677断层邻近范围存在异常区域,疑似存在该系列构造的衍生断裂;通过数值模拟2种工况下的应力变化响应能量释放规律,反演得到该区域内存在未探明的隐伏构造。通过现场槽波踏勘等物探方法得到特定范围内存在典型异常破碎区,进一步验证了微震监测与数模结合识别隐伏构造活化的可行性及准确性。Abstract: The microseismic monitoring can be used to identify and predict the activations strength of rock breaking, faults or hidden structures, and the use of numerical simulation technology can realize the inversion and reproduction of the stress field in the structural activation zone, the two complement each other, which can realize stress disturbance- stress concentration- local micro fracture- stress migration captured from internal cause to the appearance in the whole activation process of hidden structure. Based on the production and geological conditions of 1612A working face in Zhangji Coal Mine of Huaihe Energy Group, and the microseismic(MS) monitoring system, the temporal and spatial distribution characteristics of MS events were analyzed in the stope. The relationship between microseismic activity and fault activation was explored. And the identification method of hidden structure activation was proposed with the inversion of numerical simulation based on the MS data. The results show that, the MS events in the stope had typical time-phased and spatial regional distribution characteristics. Combined with the source parameters, it isdetermined that there is an abnormal area near the faults of F1611A76-F1611A7677, which was suspected to be a derivative fault of these faults. Through numerical simulation of the stress changes under two conditions to respond to the energy release law, the inversion results indicated that there were hidden structures in the measured area. Through field survey and trough wave geophysical exploration, it was found that there were typical broken abnormal areas in the specific range, which further verified the feasibility and accuracy of MS monitoring combined with numerical simulation to identify the activation of hidden structures.
-
-
[1] 施龙青,王珂,韩进,等.玉山井田101煤层奥灰突水危险性评价[J].煤炭技术,2019,38(10):61-63. SHI Longqing, WANG Ke, HAN Jin, et al. Risk assessment of water inrush from Ordovician limestone in 101 coal seam mining of Yushan Mine Field[J]. Coal Technology, 2019, 38(10): 61-63.
[2] 蓝航,陈东科,毛德兵.我国煤矿深部开采现状及灾害防治分析[J].煤炭科学技术,2016,44(1):39-46. LAN Hang, CHEN Dongke, MAO Debing. Current status of deep mining and disaster prevention in China[J]. Coal Science and Technology, 2016, 44(1): 39-46.
[3] 赵庆彪,赵昕楠,武强,等.华北型煤田深部开采底板“分时段分带”突破突水机理[J].煤炭学报,2015,40(7):1601-1607. ZHAO Qingbiao, ZHAO Xinnan, WU Qiang, et al. Water burst mechanism of “divided period and section burst” at deep coal seam floor in North China type coalfield mining area[J]. Journal of China Coal Society, 2015, 40(7): 1601-1607.
[4] 王铁记.峰峰矿区特大突水灾害治理技术[J].煤炭工程,2016,48(S2):16-19. WANG Tieji. Treatment technology of water inrush hazard in Fengfeng mining area[J]. Coal Engineering, 2016, 48(S2): 16-19.
[5] 刘晓国,魏廷双,余国锋,等.张集煤矿突水危险域微震监测系统应用[J].煤矿安全,2020,51(3):111. LIU Xiaoguo, WEI Tingshuang, YU Guofeng, et al. Application of micro-seismic monitoring system in dangerous area of water inrush in Zhangji Coal Mine[J]. Safety in Coal Mines, 2020, 51(3): 111.
[6] 王平,冯兴隆,石峰,等.基于微震监测技术的断层活化规律及预警研究[J].有色金属(矿山部分),2019, 71(5):1-5. WANG Ping, FENG Xinglong, SHI Feng, et al. Investigation on activation characteristics and predicting of faults based on microseismic monitoring[J]. Nonferrous Metals (Mining Section), 2019, 71(5): 1-5.
[7] 姜福兴,刘伟建,叶根喜,等.构造活化的微震监测与数值模拟耦合研究[J].岩石力学与工程学报,2010, 29(S2):3590-3597. JIANG Fuxing, LIU Weijian, YE Genxi, et al. Coupling study of microseismic monitoring and numerical simulation for tectonic activation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3590-3597.
[8] 马天辉,唐春安,唐烈先,等.基于微震监测技术的岩爆预测机制研究[J].岩石力学与工程学报,2016,35(3):470-483. MA Tianhui, TANG Chunan, TANG Liexian, et al. Mechanism of rock burst forecasting based on micro-seismic monitoring technology[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 470-483.
[9] 赵周能,冯夏庭,陈炳瑞,等.深埋隧洞微震活动区与岩爆的相关性研究[J].岩土力学,2013,34(2):491. ZHAO Zhouneng, FENG Xiating, CHEN Bingrui, et al. Study of relativity between rockburst and microseismic activity zone in deep tunnel[J]. Rock and Soil Mechanics, 2013, 34(2): 491.
[10] Bokelmann GHR, Beroza GC. Depth-dependent earthquake focal mechanism or-ientation: evidence for a weak zone in the lower crust[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(9): 21683. [11] Del Fresno C, Dominguez Cerdena I, Cesca S, et al. The 8 october 2011 earthquake at el hierro (Mw 4.0): focal mechanisms of the mainshock and its foreshocks[J]. Bulletin of the Seismological Society of America, 2014, 105(1):330-340. [12] Takada Y, Katsumata K, Katao H, et al. Stress accumulation process in and around the Atotsugawa fault, central Japan, estimated from focal mechanism analysis[J]. Tectonophysics, 2016, 682: 134-146. [13] 刘超,唐春安,薛俊华,等.煤岩体微震事件属性识别与标定综合分析方法[J].采矿与安全工程学报,2011,28(1):61-65. LIU Chao, TANG Chunan, XUE Junhua, et al. Comprehensive analysis method of identifying and calibrating micro-seismic events attributes in coal and rock mass[J]. Journal of Mining & Safety Engineering, 2011, 28(1): 61-65.
[14] 程关文,王悦,马天辉,等.煤矿顶板岩体微震分布规律研究及其在顶板分带中的应用—以董家河煤矿微震监测为例[J].岩石力学与工程学报,2017,36(S2):4036-4046. CHENG Guanwen, WANG Yue, MA Tianhui, et al. Research on the partitioning method of the overburden in coal mine based on microseismic monitoring[J]. Chinese Journal of Rock Mechanics & Engineering, 2017, 36(S2): 4036-4046.
[15] CHENG Guanwen, LI Lianchong, ZHU Wancheng, et al. Microseismic investigation of mining-induced brittle fault activation in a Chinese coal mine[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 1365-1609. [16] 程关文.煤矿突水的微破裂前兆信息微震监测技术研究[D].大连:大连理工大学,2017. [17] 赵兴东,李元辉,袁瑞甫,等.基于声发射定位的岩石裂纹动态演化过程研究[J].岩石力学与工程学报,2007,26(5):944-950. ZHAO Xingdong, LI Yuanhui, YUAN Ruifu, et al. Study on crack dynamic propagation process of rock samples based on acoustic emission location[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 944-950.
[18] 姜福兴.采场覆岩空间结构观点及其应用研究[J].采矿与安全工程学报,2006,23(1):30-33. JIANG Fuxing. View point of spatial structures of overlying strata and its application in coal mine[J]. Journal of Mining & Safety Engineering, 2006, 23(1): 30-33.
-
期刊类型引用(9)
1. 陈太勇,刘国磊,常笑笑,吴延成,马秋峰,郝喜庆,赵成博. 采场正断层损伤活化机理与特征. 煤矿安全. 2025(02): 126-136 . 本站查看
2. 梁文昭,刘国磊,郑寓超,王峰,孟圣师,崔嵛,马秋峰. 深部构造区大倾角工作面回撤致冲机理及防治技术. 煤矿安全. 2024(03): 127-138 . 本站查看
3. 赵立松,周金艳. 瓦斯抽采地质异常区微震响应规律研究. 煤炭工程. 2024(03): 96-101 . 百度学术
4. 黄刚,韩云春,余国锋,罗勇,任波,叶赞,王立超,赵靖,徐一帆. 全光纤微震监测技术在底板突水监测中的应用研究. 工矿自动化. 2024(06): 36-45 . 百度学术
5. 余国锋,韩云春,任波,魏廷双,郑群,汪洋,牟文强. 基于微震监测的底板陷落柱注浆围岩体采动破坏研究. 煤矿安全. 2024(12): 206-213 . 本站查看
6. 于善帅. 煤矿井下震动信号主频分布特征研究. 现代矿业. 2023(06): 230-233 . 百度学术
7. 裴艳龙. 综采工作面过断层顶板控制技术研究与应用. 机械管理开发. 2023(10): 279-280+283 . 百度学术
8. 韦永豪,王振伟,李斌,王智涛,李元浩,弓启祥. 开采-渗流耦合作用下含正断层露天矿边坡变形规律研究. 露天采矿技术. 2023(06): 21-25 . 百度学术
9. 林喜康,游新天. 紫金山金铜矿地下开采微震活动规律研究. 中国矿业. 2023(12): 170-176 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 47
- HTML全文浏览量: 0
- PDF下载量: 14
- 被引次数: 10