• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

基于热力循环理论的矿井中央泵房通风系统优化研究

唐建华, 王海桥, 孙定中

唐建华, 王海桥, 孙定中. 基于热力循环理论的矿井中央泵房通风系统优化研究[J]. 煤矿安全, 2021, 52(9): 147-152.
引用本文: 唐建华, 王海桥, 孙定中. 基于热力循环理论的矿井中央泵房通风系统优化研究[J]. 煤矿安全, 2021, 52(9): 147-152.
TANG Jianhua, WANG Haiqiao, SUN Dingzhong. Research on ventilation system optimization of mine central pump room based on thermal cycle theory[J]. Safety in Coal Mines, 2021, 52(9): 147-152.
Citation: TANG Jianhua, WANG Haiqiao, SUN Dingzhong. Research on ventilation system optimization of mine central pump room based on thermal cycle theory[J]. Safety in Coal Mines, 2021, 52(9): 147-152.

基于热力循环理论的矿井中央泵房通风系统优化研究

Research on ventilation system optimization of mine central pump room based on thermal cycle theory

  • 摘要: 以竹山塘煤矿为研究背景,基于热力循环理论,对矿井中央泵房原有通风系统进行改造,将副井作为中央泵房进风井,新风井作为回风井,在副井井口设置多级喷淋室系统,构建热力循环系统,并对系统稳定性进行可行性论证,最后对井筒摩擦阻力系数、井筒平均热力学温度对热力循环系统稳定性影响展开分析。研究结果表明:热力循环系统通风总阻力为131.03 Pa,通风动压为168.63 Pa,该通风系统运行稳定可靠;热力循环系统建成后,直接释放矿井主要通风机风量负荷56.67 m3/s;通风总阻力与副井、新风井摩擦阻力系数均呈正相关关系,降低井筒摩擦阻力系数可有效减少通风总阻力;通风动压与副井平均热力学温度呈负相关关系,与新风井平均热力学温度均呈正相关关系,副井平均热力学温度越低,新风井平均热力学温度越高,越有利于热力循环系统运行稳定。热力循环对矿井中央泵房通风系统优化是有利的。
    Abstract: Taking Zhushantang Coal Mine as the research background, based on the thermal cycle theory, the original ventilation system of mine central pump room was reformed. The auxiliary shaft was used as the inlet air shaft of the central pump room, the fresh air shaft was used as the return air shaft, and the multi-stage spray room system was set at the wellhead of the auxiliary shaft to construct the thermal cycle system, and the feasibility of the system stability was demonstrated. Finally, the influence of wellbore friction coefficient and wellbore average thermodynamic temperature on the stability of thermal cycle system is analyzed. The results show that: the total ventilation resistance of the thermal cycle system is 131.03 Pa, the ventilation power is 168.63 Pa, the system is stable and reliable; after completion of the thermal cycle system, the air volume load of the mine fan will be released directly by 56.67 m3/s. The total ventilation resistance is positively correlated with the friction resistance coefficient of auxiliary shaft and fresh air shaft. Reducing the friction resistance coefficient of shaft can effectively reduce the total ventilation resistance. The ventilation power is negatively correlated with the average thermodynamic temperature of auxiliary shaft. The lower the average thermodynamic temperature of the auxiliary shaft is, the higher the average thermodynamic temperature of the fresh air shaft is, which is more conducive to the stable operation of the thermal cycle system.
  • [1] 卢新明,尹红.矿井通风智能化理论与技术[J].煤炭学报,2020,45(6):2236-2247.

    LU Xinming, YIN Hong. The intelligent theory and technology of mine ventilation[J]. Journal of China Coal Society, 2020, 45(6): 2236-2247.

    [2] 李宗翔,王天明,王双勇,等.煤与瓦斯突出矿井通风系统灾害演变仿真研究[J].煤炭学报,2017,42(4):929-934.

    LI Zongxiang, WANG Tianming, WANG Shuangyong, et al. Simulation study of ventilation system disaster evolution in coal and gas outburst mine[J]. Journal of China Coal Society, 2017, 42(4): 929-934.

    [3] 周福宝,魏连江,夏同强,等.矿井智能通风原理、关键技术及其初步实现[J].煤炭学报,2020,45(6):2225.

    ZHOU Fubao, WEI Lianjiang, XIA Tongqiang, et al. Principle, key technology and preliminary realization of mine intelligent ventilation[J]. Journal of China Coal Society, 2020, 45(6): 2225.

    [4] 汪崇鲜,李绪国,谭波.矿井通风系统风量稳定性的影响因素[J].煤炭学报,2008,33(8):931-935.

    WANG Chongxian, LI Xuguo, TAN Bo. Influencing factors of air quantity stability of ventilation system in coal mine[J]. Journal of China Coal Society, 2008, 33(8): 931-935.

    [5] 刘剑.矿井智能通风关键科学技术问题综述[J].煤矿安全,2020,51(10):108-111.

    LIU Jian. Overview on key scientific and technical issues of mine intelligent ventilation[J]. Safety in Coal Mines, 2020, 51(10): 108-111.

    [6] 邵良杉,于保才,陈晓永.矿井智能通风关键技术[J].煤矿安全,2020,51(11):121-124.

    SHAO Liangshan, YU Baocai, CHEN Xiaoyong. Key technology of mine intelligent ventilation[J]. Safety in Coal Mines, 2020, 51(11): 121-124.

    [7] LI S, DENG S, ZHAO L, et al. Thermodynamic carbon pump 2.0: Elucidating energy efficiency through the thermodynamic cycle[J]. Energy, 2021, 215: 119-155.
    [8] AHMED A, KONDOR L, IMRE A. Thermodynamic efficiency maximum of simple organic Rankine cycles[J]. Energies, 2021, 14(2): 307-315.
    [9] DOUVARTZIDES S, KARMALIS L, NTINAS N. Thermodynamic cycle analysis of an automotive internal combustion engine with the characteristics of the commercial BMW N54 spark-ignition model[J]. Journal of Energy Resources Technology, 2020, 142(10): 1-22.
    [10] ALREBEI O, BOWEN P, VALERA M. Parametric study of various thermodynamic cycles for the use of unconventional blends[J]. Energies, 2020, 13(18): 46-56.
    [11] XU W, ZHAO L, MAO S, et al. Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle[J]. Applied Energy, 2020, 270: 115-186.
    [12] 林汝谋,金红光.热力循环-工程热力学的一个永恒研究方向[J].燃气轮机技术,2002,15(4):1-8.

    LIN Rumou, JIN Hongguang. Thermodynamic cycle-an eternal research trend of engineering thermodynamics[J]. Gas Turbin Technology, 2002, 15(4): 1-8.

    [13] 刘建功.煤矿低温热源利用技术研究与应用[J].煤炭科学技术,2013,41(4):124-128.

    LIU Jiangong. Study and application of mine low temperature thermal resources utilization technology[J]. Coal Science and Technology, 2013, 41(4): 124-128.

    [14] 刘建功.冀中能源低碳生态矿山建设的研究与实践[J].煤炭学报,2011,36(2):317.

    LIU Jiangong. Study and practice of low-carbon ecological mining construction of Jizhong Energy Group[J]. Journal of China Coal Society, 2011, 36(2): 317.

    [15] 郭平业,秦飞.张双楼煤矿深井热害控制及其资源化利用技术应用[J].煤炭学报,2013,38(S2):393.

    GUO Pingye, QIN Fei. Preventive measures against heat hazard and its utilization in Zhangshuanglou Coal Mine[J]. Journal of China Coal Society, 2013, 38(S2): 393-398.

    [16] 段泽敏,马素霞,郭千中.矿井余热资源利用技术[J].煤矿安全,2014,45(9):68-71.

    DUAN Zemin, MA Suxia, GUO Qianzhong. Mine waste heat resources utilization technology[J]. Safety in Coal Mines, 2014, 45(9): 68-71.

    [17] 李翔宇.赵固二矿井筒防冻供暖热源改造方案分析[J].煤炭与化工,2020,43(8):95-97.

    LI Xiangyu. Analysis of heat source reforming scheme of anti-freezing heating in Zhaogu No.2 Mine[J]. Coal and Chemical Industry, 2020, 43(8): 95-97.

    [18] 唐晓梅,马素霞,段泽敏.矿井乏风余热回收和除尘实验研究[J].煤炭学报,2016,41(8):1984-1988.

    TANG Xiaomei, MA Suxia, DUAN Zemin. Performance experiment of dust removal and waste heat resources recovery of mine ventilation[J]. Journal of China Coal Society, 2016, 41(8): 1984-1988.

    [19] 康长豪,查文华,张亮,等.深部开采高温控制理论与技术分析[J].煤矿安全,2016,47(5):89-93.

    KANG Changhao, ZHA Wenhua, ZHANG Liang, et al. Control theory and technology analysis of high temperature in deep mining[J]. Safety in Coal Mines, 2016, 47(5): 89-93.

    [20] 张育玮,邹声华,李永存.高温矿井热源对风流稳定性影响的分析[J].中国安全生产科学技术,2015,11(8):46-51.

    ZHANG Yuwei, ZOU Shenghua, LI Yongcun. Analysis on influence to airflow stability by heat source in high temperature mine[J]. Journal of Safety Science and Technology, 2015, 11(8): 46-51.

    [21] 张瑾,杜计平,阮马良.孙村煤矿热害处理技术[J].煤矿安全,2014,45(6):65-68.

    ZHANG Jin, DU Jiping, RUAN Maliang. Heat-harm treatment technology in Suncun coal mine[J]. Safety in Coal Mines, 2014, 45(6): 65-68.

    [22] 吴浩宇,彭景平,葛云征,等.一种高效海洋温差能发电循环的性能分析[J].海洋科学进展,2020,38(3):513-521.

    WU Haoyu, PENG Jingping, GE Yunzheng, et al. Study on performance analysis of the high-efficiency OTEC cycle[J]. Advances in Marine Science, 2020, 38(3): 513-521.

    [23] 苏醒,刘传聚,苏季平.太阳能烟囱的通风效应及应用研究[J].能源技术,2005,26(6):245-247.

    SU Xing, LIU Chuanju, SU Jiping. The research on ventilation effect and the application of the solar energy chimney[J]. Energy Technology, 2005, 26(6): 245.

    [24] 张靖岩,霍然,王浩波,等.烟囱效应形成机理的实验[J].中国科学技术大学学报,2006,36(1):73-76.

    ZHANG Jingyan, HUO Ran, WANG Haobo, et al. Experimental study on the generation mechanism of stack effect[J]. Journal of University of Science and Technology of China, 2006, 36(1): 73-76.

    [25] SUN Z, WU Y, LU Z, et al. Stability analysis and derived control measures for rock surrounding a roadway in a lower coal seam under concentrated stress of a coal pillar[J]. Shock and Vibration, 2020(12): 1-12.
    [26] 康红普.煤炭开采与岩层控制的时间尺度分析[J].采矿与岩层控制工程学报,2021,3(1):5-27.

    KANG Hongpu. Temporal scale analysis on coal mining and strata control technologies[J]. Journal of Mining and Strata Control Engineering, 2021, 3(1): 5-27.

    [27] 康红普,徐刚,王彪谋,等.我国煤炭开采与岩层控制技术发展40a及展望[J].采矿与岩层控制工程学报,2019,1(2):7-39.

    KANG Hongpu, XU Gang, WANG Biaomou, et al. Forty years development and prospects of underground coal mining and strata control technologies in China[J]. Journal of Mining and Strata Control Engineering, 2019, 1(2): 7-39.

    [28] 国家安全生产监督管理总局,国家煤矿安全监察局.煤矿安全规程[M].北京:煤炭工业出版社,2011.
  • 期刊类型引用(8)

    1. 常宏. 矿井通风系统节能研究. 能源与节能. 2024(10): 101-103+107 . 百度学术
    2. 朱勇. 深部矿井井下通风系统优化方案研究. 现代职业安全. 2023(01): 79-82 . 百度学术
    3. 任春美. 基于深度学习的矿用通风机运行状态监测及报警系统研究. 煤炭技术. 2023(04): 199-201 . 百度学术
    4. 杜晓林. 基于防灭火的矿井通风系统优化技术探究. 内蒙古煤炭经济. 2023(01): 31-33 . 百度学术
    5. 乔鹏. 基于传感信息反馈的矿井开采区机械通风系统改进设计. 能源与环保. 2023(11): 105-110 . 百度学术
    6. 邹龙. 基于三维数字化模型的金川二矿区通风系统优化研究. 矿业研究与开发. 2022(09): 152-157 . 百度学术
    7. 申小玲,李崇华. 矿井通风系统变频节能控制探究. 煤炭技术. 2022(12): 164-167 . 百度学术
    8. 李向征. 姚桥煤矿西十采区回风系统优化研究. 华北科技学院学报. 2021(06): 9-15 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  24
  • HTML全文浏览量:  0
  • PDF下载量:  9
  • 被引次数: 8
出版历程
  • 发布日期:  2021-09-19

目录

    /

    返回文章
    返回