• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

C100高性能混凝土在冻结井筒井壁中的应用

王恒, 郭君华

王恒, 郭君华. C100高性能混凝土在冻结井筒井壁中的应用[J]. 煤矿安全, 2021, 52(9): 122-128.
引用本文: 王恒, 郭君华. C100高性能混凝土在冻结井筒井壁中的应用[J]. 煤矿安全, 2021, 52(9): 122-128.
WANG Heng, GUO Junhua. Application of C100 high performance concrete in freezing shaft wall[J]. Safety in Coal Mines, 2021, 52(9): 122-128.
Citation: WANG Heng, GUO Junhua. Application of C100 high performance concrete in freezing shaft wall[J]. Safety in Coal Mines, 2021, 52(9): 122-128.

C100高性能混凝土在冻结井筒井壁中的应用

Application of C100 high performance concrete in freezing shaft wall

  • 摘要: 为减薄冻结井筒设计井壁的厚度,同时避免大体积混凝土水化热造成的井壁开裂问题,赵固二矿西风井采用了C100高性能混凝土作为井筒深部井壁材料。经过多次、多地原材料比选后,确定了P.II52.5硅酸盐水泥、抗压强度为148 MPa的玄武岩碎石、细度模数为2.8的机制砂、低温早强保坍型聚羧酸盐高性能减水剂作为C100高性能混凝土的原料。通过配合比试验,确定了水泥∶砂∶碎石∶掺合料∶矿粉∶水∶减水剂为395∶600∶1 100∶120∶100∶105∶29的配合比。经过现场实际应用,最终C100冻结段井壁未出现任何裂缝,保证了良好的承压、封水性能。井壁浇筑28 d后,通过现场取样进行强度实测,检测结果表明C100高性能混凝土达到设计强度等级的117%,超过了井巷工程混凝土强度的最低要求为设计强度1.15倍的标准。
    Abstract: In order to reduce the thickness of the frozen shaft and avoid shaft cracking caused by hydration heat of mass concrete, C100 high-performance concrete is adopted as the deep shaft material in the west air shaft of Zhaogu No.2 mine. After multiple and multi-site comparison of raw materials, P.II52.5 portland cement, basalt gravel with compressive strength of 148 MPa, mechanism sand without fineness modulus of 2.8 and low-temperature early-strength collapse-protected polycarbarate high-performance water reducer were determined as the raw materials for C100 high-performance concrete. By mixture ratio test, the C100 concrete cement∶ sand∶ gravel∶ admixture∶ mineral powder∶ water∶ water reducing agent is 395∶600∶1 100∶120∶100∶105∶29. Ultimately, no cracks appeared in the borehole wall of C100 freezing section, which ensured good performance of pressure bearing and water sealing. After 28 days of shaft lining casting, field sampling was conducted to measure the strength. The test results showed that the C100 high-performance concrete reached 117% of the designed strength level, which exceeded the standard of 1.15 times of the designed strength as the minimum requirement for the concrete strength of shaft engineering.
  • [1] 李功洲.中国冻结法凿井理论与技术综述[J].建井技术,2017,38(4):1-10.

    LI Gongzhou. China mine shaft sinking theory and technology summary with ground freezing method[J]. Mine Construction Technology, 2017, 38(4): 1-10.

    [2] 臧培刚,王伟,马宏强,等.超深厚冲积层冻结井筒施工关键技术研究[J].煤炭科学技术,2017,45(8):90.

    ZANG Peigang, WANG Wei, MA Hongqiang, et al. Research on key construction technologies of frozen shaft inultra deep and thick alluvium[J]. Coal Science and Technology, 2017, 45(8): 90-97.

    [3] 管学茂,刘松辉,张海波,等.深厚冲积层冻结法凿井高性能混凝土综述[J].煤炭工程,2017,49(1):27.

    GUAN Xuemao, LIU Songhui, ZHANG Haibo, et al. A review on high performance concrete for freeze sinking in deep alluvium[J]. Coal Engineering, 2017, 49(1): 27.

    [4] 孙仕元,姚直书.冻结井壁高强高性能混凝土配合比设计及应用[J].建井技术,2017,38(1):1-4.

    SUN Shiyuan, YAO Zhishu. Mix ratio design and application of high strength and high performance concrete to mine freezing shaft liner[J]. Mine Construction Technology, 2017, 38(1): 1-4.

    [5] 缪志勇,韩方玉,张倩倩,等.高性能掺合料在矿井工程高强混凝土的应用[J].江苏建筑,2016(4):98-100.

    MIAO Zhiyong, HAN Fangyu, ZHANG Qianqian, et al. Application of high-performance mineral admixture in high-strength concrete used in mine engineering[J]. Jiangsu Construction, 2016(4): 98-100.

    [6] 严少洋,焦华喆,陈新明,等.高强低热混凝土在赵固二矿主井冻结段的应用[J].煤炭工程,2017,49(7):41-44.

    YAN Shaoyang, JIAO Huazhe, CHEN Xinming, et al. Application of high-strength-low-heat concrete in main shaft freezing section of Zhaogu No.2 Mine[J]. Coal Engineering, 2017, 49(7): 41-44.

    [7] 许良发.深厚表土冻结井壁结构破裂机理及修复技术研究[J].煤炭技术,2016,35(12):98-100.

    XU liangfa. Fracture mechanism and remediation technology of frozen shaft lining in thick top soil[J]. Coal Technology, 2016, 35(12): 98-100.

    [8] 赵志根.井壁破裂研究中应注意的几个问题[J].西部探矿工程,2004(8):125-126.

    ZHAO Zhigen. Some viewpoints about research of shaft wall fracture[J]. West-china Exploration Engineering, 2004(8): 125-126.

    [9] 庞荣庆.深厚表土冻结井壁破裂及其分析[C]//地层冻结工程技术和应用——中国地层冻结工程40年论文集.北京:中国煤炭工业协会,1995:341-345.
    [10] 孔亮.深厚表土中的冻结立井井筒稳定性动态分析[D].青岛:山东科技大学,2004.
    [11] 杨维好.深厚表土中井壁破裂灾害防治成套技术[R].徐州:中国矿业大学,2008.
    [12] 管华栋,周晓敏,徐衍,等.冻结立井井壁早期温度应力计算研究[J].金属矿山,2018(5):44-47.

    GUAN Huadong, ZHOU Xiaomin, XU Yan, et al. Calculation of early thermal stress in freezing vertical shaft lining[J]. Metal Mine, 2018(5): 44-47.

    [13] 杨道召.冻结井井壁高性能混凝土配制及其施工工艺研究[J].能源技术与管理,2015,40(6):152-153.
    [14] 曹辉.冻结井壁高性能混凝土细观结构研究[J].煤炭技术,2015,34(9):95-97.

    CAO Hui. Research on mesostructure of HPC applied in frozen shaft lining[J]. Coal Technology, 2015, 34(9): 95-97.

    [15] 魏国强,陈章庆.深厚冲积层冻结段安全快速施工技术[J].煤炭工程,2015,47(2):34-36.

    WEI Guoqiang, CHEN Zhangqing. Safe and rapid construction technology in deep allvium freezing section[J]. Coal Engineering, 2015, 47(2): 34-36.

    [16] 杨平,汪仁和.淮北临涣矿区冻结井壁破裂治理实测研究[C]//地层冻结工程技术和应用——中国地层冻结工程40年论文集.北京:北京中国煤炭工业协会,1995:286-290.
    [17] 姚直书,高扬,宋海清.冻结井壁防裂抗渗高性能混凝土试验研究[J].硅酸盐通报,2014,33(4):918.

    YAO Zhishu, GAO Yang, SONG Haiqing. Experimental study on crack control and anti-permeability of high performance concrete in freezing shaft lining[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(4): 918-922.

    [18] 周晓敏,管华栋,张磊.基于冻结壁地层相变环境下大体积混凝土温度场研究[J].应用基础与工程科学学报,2017,25(2):395-406.

    ZHOU Xiaomin, GUAN Huadong, ZHANG Lei. Temperature field of mass concrete based on the phase change condition of ground freezing wall[J]. Journal of Basic Science and Engineering, 2017, 25(2): 395.

    [19] 郭玉超,纪洪广,李成江,等.冻结井筒大体积混凝土井壁温度场实测研究[J].建井技术,2015,36(6):36-40.

    GUO Yuchao, JI Hongguang, LI Chengjiang, et al. Field measurement study on temperature field of mass concrete shaft lining by freezing sinking method[J]. Mine Construction Technology, 2015, 36(6): 36-40.

    [20] 张涛,杨维好,陈国华,等.大体积高性能混凝土冻结井壁水化热温度场实测与分析[J].采矿与安全工程学报,2016,33(2):290-296.

    ZHANG Tao, YANG Weihao, CHEN Guohua, et al. Monitoring and analysis of hydration heat temperature field for high performance mass concrete freezing shaft lining[J]. Journal of Mining & Safety Engineering, 2016, 33(2): 290-296.

    [21] 骆念海,杨维好.井壁竖直附加力的影响因素分析[J].煤炭科学技术,2000(12):41-43.

    LUO Nianhai, YANG Weihao. Analysis of influencing factors of shaft wall vertical additional force[J]. Coal Science and Technology, 2000(12): 41-43.

    [22] 张涛.深厚复杂地层中冻结井壁温度场演化规律研究[D].徐州:中国矿业大学,2018.
    [23] 林基泳,蒋勇,吴兴颜等.石粉对混凝土性能影响的研究现状[J].硅酸盐通报,2018(12):3842-3848.

    LIN Jiyong, JIANG Yong, WU Xingyan, et al. Research status on influence of micro fines on concrete performance[J]. Bulletin of the Chinese Ceramic Society, 2018(12): 3842-3848.

    [24] 赵学涛,杨鼎宜,朱从香,等.掺机制砂的超高性能混凝土试验研究[J].混凝土,2020(9):152-154.

    ZHAO Xuetao, YANG Dingyi, ZHU Congxiang, et al. Study on ultra high performance concrete mixed with mechanism sand[J]. Concrete, 2020(9): 152-154.

    [25] 刘战鳌,周明凯,李北星.石粉对机制砂混凝土性能影响的研究进展[J].材料导报,2014,28(19):100.

    LIU Zhanao, ZHOU Mingkai, LI Bexing. Research progress on influence of microfines on manufactured sand concrete’s performance[J]. Materials Review, 2014, 28(19): 100.

    [26] 姚燕,王玲,吴浩,等.高强高性能混凝土研究和应用现状与发展方向[J].建井技术,2018,39(4):28-35.

    YAO Yan, WANG Ling, WU Hao, et al. Study, application status and development orientation of high strength and high performances concrete[J]. Mine Construction Technology, 2008, 39(4): 28-35.

    [27] 孔维浩,杨龙,姚直书,等.冻结井壁纤维混杂与微膨胀高性能混凝土配制与抗裂试验[J].煤矿安全,2020,51(3):69-74.

    KONG Weihao, YANG Long, YAO Zhishu, et al. Preparation and crack resistance test of high performance concrete with fiber hybrid and micro expansion freezing shaft lining[J]. Safety in Coal Mines, 2020, 51(3): 69-74.

    [28] 姚直书,赵丽霞,程桦,等.深厚表土层冻结井筒高强钢筋混凝土内壁设计优化与实测分析[J].煤炭学报,2019,44(7):2125-2132.

    YAO Zhishu, ZHAO Lixia, CHENG Hua, et al. Optimization design and measurement analysis on inter lining of high strength reinforced concrete frozen shaft lining with deep topsoil[J]. Journal of China Coal Society, 2019, 44(7): 2125 -2132.

    [29] 蒋林华,徐辉东,储洪强,等.冻结法施工井壁中高强高性能混凝土研制应用[J].煤炭科学技术,2010,38(10):38-41.

    JIANG Linhua, XU Huidong, CHU Hongqiang, et al. Development and application of high strength and high performance concrete to mine freezing shaft[J]. Coal Science and Technology, 2010, 38(10): 38-41.

    [30] 鲁统卫,王谦,郭蕾.深冻结井井壁高强高性能混凝土研究[J].建井技术,2008,29(6):14-17.

    LU Tongwei, WANG Qian, GUO Lei. Study on high strength and high performance concrete ofthe deep frozen well wall[J]. Mine Construction Technology, 2008, 29(6): 14-17.

    [31] 鲁统卫.基于冻结法施工的深井高强混凝土变形性能及裂缝控制研究[R].济南:山东省建筑科学研究院,2017.
    [32] 张英.深厚冲积层冻结法C100高强高性能混凝土井壁结构设计[J].煤炭工程,2017,49(9):10-13.

    ZHANG Ying. Structure design of C100 high performance concrete shaft wall with ground freezing in deep thick alluvium[J]. Coal Engineering, 2017, 49(9): 10-13.

    [33] 高伟,任强.C90高性能混凝土在冻结井筒中的应用研究[J].施工技术,2014,43(15):34-36.

    GAO Wei, REN Qiang. Application and research of C90 high performance concrete in freezing shaft[J]. Construction Technology, 2014, 43(15): 34-36.

    [34] 李功洲,高伟,陈章庆,等.我国煤矿冻结法凿井井壁应用大于C80高强高性能混凝土技术现状与展望[J].建井技术,2018,39(4):45-48.

    LI Gongzhou, GAO Wei, CHEN Zhangqing, et al. Status and outlook of over C80 high strength and high performance concrete technology applied to shaft liner by freezing sinking method in China coal mine[J]. Mine Construction Technology, 2018, 39(4):45-48.

    [35] 张红亚.冻结深立井钢筋混凝土井壁温度场与温度应力研究[D].合肥:合肥工业大学,2013.
    [36] 黎冠,刘永涛,卜祥丽,等.基于ZigBee的超低功耗冻结井壁无线测温系统[J].自动化仪表,2016,37(5):44-47.

    LI Guan, LIU Yongtao, BU Xiangli, et al. Zigbee-based wireless temperature measurement system with ultra-low power consumption for freezing shaft wall[J]. Automation Instrument, 2016, 37(5): 44-47.

    [37] 翟延忠,刘洪渊.冻结监测专用一线总线监测模块的设计[J].煤炭工程,2015,47(2):130-132.

    ZHAI Yanzhong, LIU Hongyuan. Design of special 1-wire bus monitoring module for freezing monitoring[J]. Coal Engineering, 2015, 47(2): 130-132.

  • 期刊类型引用(9)

    1. 陈太勇,刘国磊,常笑笑,吴延成,马秋峰,郝喜庆,赵成博. 采场正断层损伤活化机理与特征. 煤矿安全. 2025(02): 126-136 . 本站查看
    2. 梁文昭,刘国磊,郑寓超,王峰,孟圣师,崔嵛,马秋峰. 深部构造区大倾角工作面回撤致冲机理及防治技术. 煤矿安全. 2024(03): 127-138 . 本站查看
    3. 赵立松,周金艳. 瓦斯抽采地质异常区微震响应规律研究. 煤炭工程. 2024(03): 96-101 . 百度学术
    4. 黄刚,韩云春,余国锋,罗勇,任波,叶赞,王立超,赵靖,徐一帆. 全光纤微震监测技术在底板突水监测中的应用研究. 工矿自动化. 2024(06): 36-45 . 百度学术
    5. 余国锋,韩云春,任波,魏廷双,郑群,汪洋,牟文强. 基于微震监测的底板陷落柱注浆围岩体采动破坏研究. 煤矿安全. 2024(12): 206-213 . 本站查看
    6. 于善帅. 煤矿井下震动信号主频分布特征研究. 现代矿业. 2023(06): 230-233 . 百度学术
    7. 裴艳龙. 综采工作面过断层顶板控制技术研究与应用. 机械管理开发. 2023(10): 279-280+283 . 百度学术
    8. 韦永豪,王振伟,李斌,王智涛,李元浩,弓启祥. 开采-渗流耦合作用下含正断层露天矿边坡变形规律研究. 露天采矿技术. 2023(06): 21-25 . 百度学术
    9. 林喜康,游新天. 紫金山金铜矿地下开采微震活动规律研究. 中国矿业. 2023(12): 170-176 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  196
  • HTML全文浏览量:  0
  • PDF下载量:  15
  • 被引次数: 10
出版历程
  • 发布日期:  2021-09-19

目录

    /

    返回文章
    返回