采动影响下底板隐伏陷落柱突水灾变数值分析
Numerical analysis on water inrush catastrophe of concealed collapse column of floor under mining
-
摘要: 为研究采动影响下底板隐伏陷落柱的渗流演化规律及突水灾变特征,以1个隐伏陷落柱工程为背景,考虑流固耦合作用以及围岩渗透系数的动态变化特征,模拟再现隐伏陷落柱随工作面开挖前进的突水灾变过程;在此基础上,研究隐伏陷落柱发育高度以及水压对煤层底板突水的影响。结果表明:当工作面开挖通过陷落柱时,陷落柱与煤层间的导水裂隙通道起始于陷落柱顶部最前方而终于煤层底板距陷落柱中心约20 m的位置;随着工作面的向前推进,煤层底板的涌水量大体呈“S”型曲线分布,其在工作面靠近并通过陷落柱时增大速率最快,而在工作面远离陷落柱中心35 m后逐渐保持稳定;陷落柱距煤底越近,煤层底板涌水量发生快速增长的时间点就越靠前且其增长区间范围也越大,同时煤层底板的涌水量与其距陷落柱的距离呈指数衰减式关系;当工作面推进距离相同时,煤层底板的涌水量与陷落柱水压呈指数递增关系。Abstract: In order to study the characteristics and evolution for water inrush catastrophe of concealed collapse column of floor under mining, a concealed collapse column project was taken as the background. The process of water inrush catastrophe of concealed collapse column under different driving distances of working face was reproduced by considering fluid-solid coupling effect and dynamic change characteristics of surrounding rock permeability coefficient. On this basis, the influence of development height and water pressure of concealed collapse column on coal floor water inrush was studied. The research results show that: when the working face is excavated through the collapse column, the water-conducting fissure channel between the collapse column and the coal seam starts at the front of the top of the collapse column and ends at a position about 20 m from the coal seam floor to the center of the collapse column. With the excavation advancement of working face, the water inflow of coal floor is generally distributed in an “S” curve, which increases fastest when the working face is close to and passes through the collapse column, and gradually stabilizes after the working face is 35 m away from the center of collapse column. The closer the collapse column is to the coal bottom, the faster the time point at which water inflow of coal seam floor increases rapidly and the greater the range of its growth interval. At the same time, the amount of coal floor water inflow is exponentially decayed with the distance from collapse column top. When the driving distance of working face is same, the water inflow of coal floor has an exponentially increasing relationship with the water pressure of collapse column.
-
-
[1] 黄炜伟.采动条件下陷落柱变形破坏与突水危险性研究[J].煤炭技术,2014,33(6):146-148. HUANG Weiwei. Study on law of deformation and water-inrush risk of karst pillar in coal seam mining[J]. Coal Technology, 2014, 33(6): 146-148.
[2] 刘志军,熊崇山.陷落柱突水机制的数值模拟研究[J].岩石力学与工程学报,2007(S2):4013-4018. LIU Zhijun, XIONG Chongshan. Numerical simulation study on water inrush mechanism from collapse column[J]. Chinese Journal of Rock Mechanics and Engineering, 2007(S2): 4013-4018.
[3] 杨为民,司海宝,吴文金.岩溶陷落柱导水类型及其突水风险预测[J].煤炭工程,2005(8):60-63. YANG Weimin, SI Haibao, WU Wenjin. Water conducted type karst sink hole and prediction of water inrush risk[J]. Coal Engineering, 2005(8): 60-63.
[4] 王冲,王沿岑.成庄矿岩溶陷落柱特征与成因分析[J].中州煤炭,2014(10):103-104. WANG Chong, WANG Yancen. Characteristic for karstic collapse columns of Chengzhuang coal mine and its genetic analysis[J]. Zhongzhou Coal, 2014(10): 103-104.
[5] 李连崇,唐春安,左宇军,等.煤层底板下隐伏陷落柱的滞后突水机理[J].煤炭学报,2009,34(9):1212. LI Lianchong, TANG Chunan, ZUO Yujun, et al. Mechanism of hysteretic ground water inrush from coal seam floor with karstic collapse columns[J]. Journal of China Coal Society, 2009, 34(9): 1212.
[6] 郝兵元,张玉江,戚庭野,等.综采面过陷落柱采动应力与柱体应力相互影响模拟研究[J].采矿与安全工程学报,2015,32(2):192-198. HAO Bingyuan, ZHANG Yujiang, QI Tingye, et al. Simulation of interaction between mine-induced stress and stress of collapse column with fully-mechanized working face advancing[J]. Journal of Mining & Safety Engineering, 2015, 32(2): 192-198.
[7] 张凯,姚邦华,吴松刚,等.陷落柱的变质量渗流特性及其突水危险性数值模拟[J].采矿与安全工程学报,2013,30(6):892-896. ZHANG Kai, YAO Banghua, WU Songgang, et al. Study on the characteristics of variable mass seepage and water inrush mechanism of collapse column[J]. Journal of Mining & Safety Engineering, 2013, 30(6): 892-896.
[8] 李樯,马丹.采动影响下隐伏陷落柱突水数值模拟[J].煤矿安全,2016,47(8):186-189. LI Qiang, MA Dan. Numerical simulation of mining effect on water inrush of hidden karst collapse pillar[J]. Safety in Coal Mines, 2016, 47(8): 186-189.
[9] 刘勇胜.底板隐伏陷落柱突水主控因素数值模拟[J].煤矿安全,2019,50(1):200-204. LIU Yongsheng. Numerical simulation of main controlling factors of water inrush from concealed collapse column[J]. Safety in Coal Mines, 2019, 50(1): 200-204.
[10] 赵金贵,郭敏泰.太原东山大窑头煤系层间构造与岩溶陷落柱群发育模式[J].煤炭学报,2013,38(11):1999-2006. ZHAO Jingui, GUO Mintai. The interlayer structures and the karst collapse pillars style of the coal measure strata in Dayaotou village, Eastern Mountain, Taiyuan[J]. Journal of China Coal Society, 2013, 38(11): 1999-2006.
[11] 经纬,薛维培,姚直书.巷道围岩塑性软化区岩石内摩擦角与黏聚力变化规律[J].煤炭学报,2018,43(8):2203-2210. JING Wei, XUE Weipei, YAO Zhishu. Variation of the internal friction angle and cohesion of the plastic softening zone rock in roadway surrounding rock[J]. Journal of China Coal Society, 2018, 43(8): 2203-2210.
[12] 张宇,任金虎,陈占清.三轴压缩下不同岩性煤岩体的强度及变形特征[J].西安科技大学学报,2015,35(6):708-714. ZHANG Yu, REN Jinhu, CHEN Zhanqing. Different lithologies coal and rock under the triaxial compression strength and deformation characteristics[J]. Journal of Xi’an University of Science and Technology, 2015, 35(6): 708-714.
[13] 李海琪,冯子军.不同加载方式及速率下石灰岩三轴力学特性研究[J].矿业研究与开发,2020,40(4):52-56. LI Haiqi, FENG Zijun. Study on triaxial mechanical properties of limestone under different loading modes and loading rates[J]. Mining Research and Development, 2020, 40(4): 52-56.
[14] 杨天鸿,徐涛,刘建新,等.应力-损伤-渗流耦合模型及在深部煤层瓦斯卸压实践中的应用[J].岩石力学与工程学报,2005,24(16):2900-2905. YANG Tianhong, XU Tao, LIU Jianxin, et al. Coupling model of stress-damage-flow and its application to the investigation of instantaneous seepage mechanism for gas during unloading in coal seam with depth[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2900-2905.
[15] 陈亮,刘建锋,王春萍,等.压缩应力条件下花岗岩损伤演化特征及其对渗透性影响研究[J].岩石力学与工程学报,2014,33(2):287-295. CHEN Liang, LIU Jianfeng, WANG Chunping, et al. Investigation on damage evolution characteristic of granite under compressive stress condition and its impact on permeability[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 287-295.
-
期刊类型引用(1)
1. 柳昭星. 奥陶系灰岩顶部劈裂注浆裂隙起裂机制试验研究. 采矿与安全工程学报. 2023(01): 204-214 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 38
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 3