• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

煤质活性炭氧化自燃热失重及传热特性研究

庞 攀, 肖 旸, 刘昆华, 黄传亮, 陆晓东

庞 攀, 肖 旸, 刘昆华, 黄传亮, 陆晓东. 煤质活性炭氧化自燃热失重及传热特性研究[J]. 煤矿安全, 2020, 51(12): 27-33.
引用本文: 庞 攀, 肖 旸, 刘昆华, 黄传亮, 陆晓东. 煤质活性炭氧化自燃热失重及传热特性研究[J]. 煤矿安全, 2020, 51(12): 27-33.
PANG Pan, XIAO Yang, LIU Kunhua, HUANG Chuanliang, LU Xiaodong. Study on Thermal Loss and Heat Transfer Characteristics of Oxidized Spontaneous Combustion of Coal-based Activated Carbon[J]. Safety in Coal Mines, 2020, 51(12): 27-33.
Citation: PANG Pan, XIAO Yang, LIU Kunhua, HUANG Chuanliang, LU Xiaodong. Study on Thermal Loss and Heat Transfer Characteristics of Oxidized Spontaneous Combustion of Coal-based Activated Carbon[J]. Safety in Coal Mines, 2020, 51(12): 27-33.

煤质活性炭氧化自燃热失重及传热特性研究

Study on Thermal Loss and Heat Transfer Characteristics of Oxidized Spontaneous Combustion of Coal-based Activated Carbon

  • 摘要: 为了对煤质活性炭氧化过程中传热特性及热失重变化进行探究,采集生产工艺过程中的3种煤质活性炭:压块料、炭化料及活化料,利用激光导热仪及热重-差热同步热分析仪对样品氧化反应过程中的热物性及热失重参数进行测定,结合非线性氧化热动力学方法、计算得出各样品表观活化能。结果表明:活化料及炭化料总放热量、最大热释放率均大于压块料,热物性参数表现出明显的阶段特征,样品热物性参数对温度敏感性排序依次为比热容>热扩散系数>导热系数;活化料及炭化料表观活化能小于压块料,经过炭化及活化工序,炭化料和活化料氧化自燃倾向性增大。
    Abstract: To research the heat transfer characteristics and thermogravimetric change of coal-based activated carbon during oxidation, and collected three kinds of coals in the production process of coal-activated carbon: briquette, carbonized materials, activate material. Laser thermal conductivity meter and thermogravimetric-differential thermal simultaneous thermal analyzer were used to measure the thermophysical properties and thermal weight loss parameters in the sample oxidation process, combined with the nonlinear oxidation thermodynamic method, and the apparent activation energy is calculated. The results demonstrated that the total heat release and maximum heat release rate of the activated material and the carbonized material are greater than briquette material. Thermal physical parameters show obvious stage characteristics. The order of thermophysical parameters to temperature sensitivity of the sample is: specific heat capacity > thermal diffusion coefficient > thermal conductivity; the apparent activation energy of activated materials and carbonized materials is less than that of pressed materials, the oxidized spontaneous combustion tendency increases after carbonization and activation process.
  • [1] 孙仲超.我国煤基活性炭生产现状与发展趋势[J].煤质技术,2010(4):49-52.
    [2] 蒋会杰.煤质活性炭论述[J].山东工业技术,2015 (4):96.
    [3] 立本英机,安部郁夫.活性炭的应用技术[M].南京:东南大学出版社,2002.
    [4] Cameron A,Macdowall J D. Theself heating of commercial powderd activated carbons[J]. Journal of Applied Chemistry and Biotechnology,1972(22):1007-1018.
    [5] Vander M M,Merwe T J,BandoszA. study of ignition of metal impregnated carbons:the influence of carbon matrix[J].Journal of Colloid and Interface Science,2005, 282(1):102-108.
    [6] 徐凡.木质活性炭自燃特性和机制研究[D].北京:中国林业科学研究院,2012.
    [7] 张宏哲,王宁,王亚琴,等.活化温度对活性炭自燃危险性的影响[J].化工学报,2012,63(11):3730-3735.
    [8] Parker W J, Jenkins R J. Thermal conductivity measurements on bismuth telluride in the presence of a2MeV electron beam[J]. Advanced Energy Conversion, 1960, 2: 87-103.
    [9] Cowan R D. Pulse Method of Measuring Thermal Diffusivity at High Temperatures[J]. Journal of Applied Physics, 2004, 34(4): 926-927.
    [10] Wen H, Lu J H, Xiao Y, et al. Temperature dependence of thermal conductivity,diffusion and specific heat capacity for coal and rocks from coalfield[J]. ThermochimicaActa, 2015, 619: 41-47.
    [11] Mostafa M S, Afify N, Gaber A, et al. Investigation of thermal properties of some basalt samples in Egypt[J]. Journal of Thermal Analysis and Calorimetry, 2004, 75(1):179-188.
    [12] Deng J, Li Q W, Xiao Y, et al. Experimental study on the thermal properties of coal during pyrolysis, oxidation,and re-oxidation[J]. Applied Thermal Engineering, 2016, 110:1137-1152.
    [13] Kidena K, Yamashita T, Akimoto A. Prediction of Thermal Swelling Behavior on Rapid Heating Using Basic Analytical Data[J]. Energy & Fuels, 2007, 21(2): 1038-1041.
    [14] 肖旸,陈龙刚,李青蔚,等.低温条件下煤的热物性参数试验研究[J].安全与环境学报,2018,18(6):137.
    [15] 肖旸,郭涛,赵婧昱,等.气煤恒温氧化动力学特性研究[J].煤矿安全,2019,50(9):51-55.
    [16] 刘宇帅.不同变质程度煤自燃特性实验研究[J].煤矿安全,2019,50(2):10-13.
    [17] Deng J, Li B, Xiao Y. Combustion properties of coal gangue using thermogravimetry Fourier transform infrared spectroscopy[J]. Applied Thermal Engineering, 2017, 116: 244-252.
    [18] 李林.煤自燃活化机理及自燃过程实验研究[D].重庆:重庆大学,2008.
    [19] 杨漪.基于氧化特性的煤自燃阻化剂机理及性能研究[D].西安:西安科技大学,2015.
    [20] 王宁.活性炭自燃危险性的研究[D].大连:大连理工大学,2012.
    [21] 胡祖荣,高胜利,赵凤起,等.热分析动力学[M].北京:科学出版社,2008:57.
  • 期刊类型引用(4)

    1. 梁士兴,李敏杰,邓振宇,徐钢,雷兢,刘文毅. 基于CFD数值模拟的煤质活性炭蒸汽喷射活化系统研究. 节能. 2024(04): 53-56 . 百度学术
    2. 张军,黎汉琪,简科,刘欣. 焦炉烟气净化系统的危险分析及防控措施. 燃料与化工. 2024(05): 68-71+75 . 百度学术
    3. 赵文彬,张培伟,王金凤,徐兴奎,李振武,王胜利,李勇. 煤岩组分对蓄热及自燃特性的影响. 煤矿安全. 2022(03): 36-42 . 本站查看
    4. 公绪金,王君竹,郭子瑞,池日光. 铁盐浸渍强化污泥活性炭-甲醇热质传递特性. 中国环境科学. 2022(11): 5208-5219 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  39
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 11
出版历程
  • 发布日期:  2020-12-19

目录

    /

    返回文章
    返回