中高位厚硬顶板长孔水力压裂防冲效果研究

    孙如达,夏永学,高家明

    孙如达,夏永学,高家明. 中高位厚硬顶板长孔水力压裂防冲效果研究[J]. 煤矿安全, 2023, 54(7): 69-77.
    引用本文: 孙如达,夏永学,高家明. 中高位厚硬顶板长孔水力压裂防冲效果研究[J]. 煤矿安全, 2023, 54(7): 69-77.
    SUN Ruda. Study on anti-impact effect of hydraulic fracturing for long holes in medium and high thick hard roof[J]. Safety in Coal Mines, 2023, 54(7): 69-77.
    Citation: SUN Ruda. Study on anti-impact effect of hydraulic fracturing for long holes in medium and high thick hard roof[J]. Safety in Coal Mines, 2023, 54(7): 69-77.

    中高位厚硬顶板长孔水力压裂防冲效果研究

    Study on anti-impact effect of hydraulic fracturing for long holes in medium and high thick hard roof

    • 摘要: 针对于门克庆煤矿3106工作面厚硬顶板卸压效果不足的问题,通过现场微震监测的微震高能事件活跃层位和理论分析确定了3106工作面顶板诱冲关键层,提出了长孔水力压裂技术并进行了现场应用,分析评判了压裂效果和卸压效果。结果表明:距离煤层平均高度59.33 m、厚度49.95 m的砂岩层为诱冲的关键层;实施水力压裂后,在关键层内预制了裂隙面,裂隙内含水量增加,视电阻率的连续性增强,出现了降阻现象;水力压裂削弱了关键层的整体性和强度,微震能量转为“高频低能”释放,大能量事件平均延米发生密度和延米释放能量分别降低了55%和79%,回采期间现场未发生大能量矿震等动力现象;工作面来压步距缩短,来压强度降低,动载系数整体显著减小,且呈逐渐下降趋势;工作面回采压裂区域后的地表沉降斜率增加,厚硬顶板垮落更充分。研究证实了长孔水力压裂技术在防冲工程中的有效性和可行性,实现了工作面的安全开采。
      Abstract: In view of the insufficient pressure relief effect of thick hard roof of 3106 working face in Menkeqing Coal Mine, the key layer inducing roof shock of 3106 working face was determined by the active strata of micro-seismic high-energy events monitored in the field and theoretical analysis. The long-hole hydraulic fracturing technology was proposed and applied in the field, and the fracturing effect and pressure relief effect were analyzed and evaluated. The results show that the sandstone layer with the average height of 59.33 m and the thickness of 49.95 m from the coal seam is the key layer to induce shock. After hydraulic fracturing, the fracture surface is prefabricated in the key layer, the water content in the fracture increases, the continuity of apparent resistivity is enhanced, and the resistance reduction phenomenon appears. Hydraulic fracturing weakens the integrity and strength of the key layer, and the micro-seismic energy is released into “high frequency and low energy”. The average occurrence density and energy released in long meters of large energy events are reduced by 55% and 79%, respectively. No dynamic phenomena such as large energy mine earthquakes occur in site during mining. The compression step distance of the working face is shortened, the compression strength is reduced, and the dynamic load coefficient decreases significantly and gradually. The slope of surface settlement increases after mining fractured zone in the working face, and the thick hard roof collapses more fully. This study confirmed the effectiveness and feasibility of long-hole hydraulic fracturing technology in anti-impact engineering, and realized the safe mining of working face.
    • [1] 潘一山.冲击地压发生和破坏过程研究[D].北京:清华大学,1999. [2] 潘一山,王来贵,章梦涛,等.断层冲击地压发生的理论与试验研究[J].岩石力学与工程学报,1998,17(6):642-649. PAN Yishan, WANG Laigui, ZHANG Mengtao, et al. The theoretical and testing study of fault rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(6): 642-649. [3] 徐曾和,徐小荷,唐春安.坚硬顶板下煤柱岩爆的尖点突变理论分析[J].煤炭学报,1995,20(5):485-491. XU Zenghe, XU Xiaohe, TANG Chun’an. Theoretical analysis of a cusp catastrophe bump of coal pillar under hard rocks[J]. Journal of China Coal Society, 1995, 20(5): 485-491. [4] 谭云亮,张明,徐强,等.坚硬顶板型冲击地压发生机理及监测预警研究[J].煤炭科学技术,2019,47(1):166-172. TAN Yunliang, ZHANG Ming, XU Qiang, et al. Study on occurrence mechanism and monitoring and early warning of rock burst caused by hard roof[J]. Coal Science and Technology, 2019, 47(1): 166-172. [5] 高魁,刘泽功,刘健,等.深孔爆破在深井坚硬复合顶板沿空留巷强制放顶中的应用[J].岩石力学与工程学报,2013,32(8):1588-1594. GAO Kui, LIU Zegong, LIU Jian, et al. Application of deep borehole blasting to gob-side entry retaining forced roof caving in hard and compound roof deep well[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1588-1594. [6] 黄炳香,赵兴龙,陈树亮,等.坚硬顶板水压致裂控制理论与成套技术[J].岩石力学与工程学报,2017,36(12):2954-2970. HUANG Bingxiang, ZHAO Xinglong, CHEN Shuliang, et al. Theory and technology of controlling hard roof with hydraulic fracturing in underground mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2954-2970. [7] 陈作,王振铎,曾华国.水平井分段压裂工艺技术现状及展望[J].天然气工业,2007,27(9):78-80. CHEN Zuo, WANG Zhenduo, ZENG Huaguo. Status quo and prospect of staged fracturing technique in horizontal wells[J]. Natural Gas Industry, 2007, 27(9): 78-80. [8] 许耀波,郭盛强.软硬煤复合的煤层气水平井分段压裂技术及应用[J].煤炭学报,2019,44(4):1169-1177. XU Yaobo, GUO Shengqiang. Technology and application of staged fracturing in coalbed methane horizontal well of soft and hard coal composite coal seam[J]. Journal of China Coal Society, 2019, 44(4): 1169-1177. [9] 赵善坤,李英杰,柴海涛,等.陕蒙地区厚硬砂岩顶板定向水力压裂预割缝倾角优化及防冲实践[J].煤炭学报,2020,45(S1):150-160. ZHAO Shankun, LI Yingjie, CHAI Haitao, et al. Pre-existing crack angle optimization of thick sandstone roof during directional hydraulic fracturing and its application to anti-rock burst in Shannxi and Inner Mongolia areas[J]. Journal of China Coal Society, 2020, 45(S1): 150-160. [10] 李全贵,邓羿泽,胡千庭,等.煤岩水力压裂物理试验研究综述及展望[J].煤炭科学技术,2022,50(12):62-72. LI Quangui, DENG Yize, HU Qianting, et al. Review and prospect of coal rock hydraulic fracturing physical experimental research[J]. Coal Science and Technology, 2022, 50(12): 62-72. [11] 康红普,冯彦军,张震,等.煤矿井下定向钻孔水力压裂岩层控制技术及应用[J].煤炭科学技术,2023,51(1):31-44. KANG Hongpu, FENG Yanjun, ZHANG Zhen, et al. Hydraulic fracturing technology with directional boreholes for strata control in underground coal mines and its application[J]. Coal Science and Technology, 2023, 51(1): 31-44. [12] 潘俊锋,康红普,闫耀东,等.顶板“人造解放层”防治冲击地压方法、机理及应用[J].煤炭学报,2023,48(2):636-648. PAN Junfeng, KANG Hongpu, YAN Yaodong, et al. The method,mechanism and application of preventing rock burst by artificial liberation layer of roof[J]. Journal of China Coal Society, 2023, 48(2): 636-648. [13] 陈凯,张东明,任发科.水力压裂试验中煤体扰动应力变化规律研究[J].煤矿安全,2023,54(3):79-84. CHEN Kai, ZHANG Dongming, REN Fake. Study on variation law of coal disturbance stress in hydraulic fracturing test[J]. Safety in Coal Mines, 2023, 54(3): 79-84. [14] 李建军,刘文岗,杜君武,等.定向长钻孔分段水力压裂技术在布尔台煤矿的应用[J].煤矿安全,2022,53(4):94-102. LI Jianjun, LIU Wengang, DU Junwu, et al. Application of directional long borehole subsection hydraulic fracturing technology in Buertai Coal Mine[J]. Safety in Coal Mines, 2022, 53(4): 94-102. [15] 冯仁俊.煤层群分层水力压裂与多层综合压裂增透效果对比研究[J].煤矿安全,2021,52(12):21-28. FENG Renjun. Comparative study on permeability enhancement effect of separate-layer fracturing and multi-layers comprehensive fracturing in coal seam group[J]. Safety in Coal Mines, 2021, 52(12): 21-28. [16] 杨俊哲,郑凯歌,王振荣,等.坚硬顶板动力灾害超前弱化治理技术[J].煤炭学报,2020,45(10):3371-3379. YANG Junzhe, ZHENG Kaige, WANG Zhenrong, et al. Technology of weakening and danger-breaking dynamic disasters by hard roof[J]. Journal of China Coal Society, 2020, 45(10): 3371-3379. [17] 钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):2-7. QIAN Minggao, MIAO Xiexing, XU Jialin. Theoretical study of key strata in rock control[J]. Journal of China Coal Society, 1996, 21(3): 2-7.
    计量
    • 文章访问数:  27
    • HTML全文浏览量:  3
    • PDF下载量:  22
    • 被引次数: 0
    出版历程
    • 网络出版日期:  2023-08-30
    • 刊出日期:  2023-08-22

    目录

      /

      返回文章
      返回