煤矿采空区与火烧空区高密度电法探测模拟
Simulation of high density electrical detection of goaf and burnt-out area in coal mine
-
摘要: 为了在实际工作中,通过高密度电法探测手段有效识别并区分煤矿火烧空区与采空区的电阻率异常特征;通过建立不同深度的煤矿火烧空区与采空区的二维电阻率剖面模型,并分别对模型进行正演模拟与反演计算分析来实现这一目的。首先通过建立数值模型验证了高密度电法中的温纳装置与偶极装置针对煤矿采空区与火烧区探测时的可行性与有效性;并通过对煤矿采空区异常与火烧空区异常的数值模拟与结果分析,识别并区分了通过高密度电法探测煤矿火烧空区与采空区时产生的电阻率异常差异;最后运用水平向与垂向的一阶导数零值曲线对电阻率拟断面进行了电阻率的特征分析。相较而言:温纳装置对水平向异常的识别能力要强于偶极装置,偶极装置对垂向异常的识别能力要强于温纳装置;而通过对电阻率拟断面进行一阶导数计算,可有效识别、区分电阻率拟断面上的各类电阻率异常特征。Abstract: The purpose of this article is to effectively identify and distinguish the anomaly characteristics of resistivity in the burnt-out area and in the goaf area of the coal mine in the method of the electrical resistivity tomography in the practice work.This article built a two-dimensional resistivity profile model of burnt-out area and the goaf area in different depth of coal mine This model is analyzed in the method of positive simulation and inverse calculation to achieve this research purpose. Firstly, the numerical models is built to verify the feasibility and effectiveness of the Wenner device and dipole device in detecting the coal mine goaf area and burnt-out area, with the method of the electrical resistivity tomography. Secondly, the comparative analysis on the numerical simulation results is conducted to identify and distinguish the anomaly characteristics of resistivity in detecting the burnt-out area and the goaf area of the coal mine, with the method of the electrical resistivity tomography. Finally, the first derivative zero value curves of the horizontal and vertical directions were introduced and used to analyze the characteristics of the resistivity of the pseudo section. In comparison, the Wenner device has stronger recognition ability than the dipole device in horizontal anomaly circumstance, and the dipole device has stronger recognition ability in vertical anomaly circumstance than the Wenner device. The calculation of the first derivative on the resistivity pseudo section can effectively identify and distinguish various types of anomaly characteristics of the resistivity pseudo section.
-
Keywords:
- burnt-out area of coal mine /
- goaf /
- high-density electrical /
- Wenner array /
- dipole device
-
-
[1] 梁勇旗, 杜守华.浅谈煤矿采空区的塌陷机理及发展因素[J].矿产勘查, 2008(8): 35-37. [2] 刘明远, 任汝洁.煤炭开采的当前收益、外部效应与能源战略选择—以鄂尔多斯盆地北部区为例[J].经济研究参考, 2011(45): 33-41. [3] 来平义.对煤矿采空区塌陷进行的分析[J].山西建筑, 2009, 35(15): 102-103. LAI Pingyi. Analysis of collapse in old coal mining area[J]. Shanxi Architecture, 2009, 35(15): 102-103.
[4] 邵振鲁, 王德明, 王雁鸣.煤田火灾探测方法研究进展[J].煤矿安全, 2012, 43(8): 189-192. SHAO Zhenlu, WANG Deming, WANG Yanming. Research progress of coalfield fire detection method[J]. Safety in Coal Mines, 2012, 43(8): 189-192.
[5] WANG Jiren, SUN Yanqiu, ZHAO Qingfu, et al. Basic theory research of coal spontaneous combustion[J]. Journal of Coal Science & Engineering, 2008, 14(2): 239-243. [6] 宋泽阳, 朱红青, 徐纪元, 等.地下煤火高温阶段贫氧不完全燃烧耗氧速率的计算[J].煤炭学报, 2014, 39(12): 2439-2445. SONG Zeyang, ZHU Hongqing, XU Jiyuan, et al. An approach to calculate oxygen consumption rate of underground coal fires with lean oxygen concentration and incomplete combustion at high temperature[J]. Journal of China coal Society, 2014, 39(12): 2439-2445.
[7] 邵振鲁, 王德明, 王雁鸣.高密度电法探测煤火的模拟及应用研究[J].采矿与安全工程学报, 2013, 30(3): 468-474. SHAO Zhenlu, WANG Deming, WANG Yanming. Simulation of 2D resistivity imaging surveys in detecting coal fires and its application[J]. Journal of Mining & Safety Engineering, 2013, 30(3): 468-474.
[8] 董浩斌, 王传雷.高密度电法的发展与应用[J].地学前缘, 2003(1): 171-176. DONG Haobin, WANG Chuanlei. Development and application of 2D resistivity imaging surveys[J]. Earth Science Frontiers, 2003(1): 171-176.
[9] 刘晓东, 张虎生, 朱伟忠.高密度电法在工程物探中的应用[J].工程勘察, 2001(4): 64-66. LIU Xiaodong, ZHANG Husheng, ZHU Weizhong. Application of high density resistivity method to engineering geophysics[J]. Geotichnical Investigation and Surveying, 2001(4): 64-66.
[10] 徐贵娃.高密度电法采空区探测数值模拟研究[J].露天采矿技术, 2016, 31(8): 40-45. XU Guiwa. Detection numerical simulation research on high density electrical method in goaf[J]. Opencast Mining Technology, 2016, 31(8): 40-45.
[11] 侯彦威.高密度电法在穿透石方层探测小煤窑积水巷道中的应用[J].煤矿安全, 2020, 51(1): 80-83. HOU Yanwei. High-density resistivity method for detecting water filled tunnel in small coal mines through stone subgrade[J]. Safety in Coal Mines, 2020, 51(1): 80-83.
[12] 王喜迁, 孙明国, 张皓, 等.高密度电法在岩溶探测中的应用[J].煤田地质与勘探, 2011, 39(5): 72-75. WANG Xiqian, SUN Mingguo, ZHANG Hao, et al. Application of high-density electrical technique in karst detection[J]. Coal Geology & Exploration, 2011, 39(5): 72-75.
[13] 殷国强, 翟培合, 宋林君, 等.伪三维高密度电法矿井探水技术[J].煤矿安全, 2018, 49(1): 100-103. YIN Guoqiang, ZHAI Peihe, SONG Linjun, et al. Mine water exploration technology with Pseudo 3D high density resistivity method[J]. Safety in Coal Mines, 2018, 49(1): 100-103.
[14] 宋吾军, 王雁鸣, 邵振鲁.高密度电法与磁法探测煤田火区的数值模拟[J].煤炭学报, 2016, 41(4): 899-908. SONG Wujun, WANG Yanming, SHAO Zhenlu. Numerical simulation of electrical resistance tomography method and magnetic method in detecting coal fires[J]. Journal of China Coal Society, 2016, 41(4): 899-908.
[15] 葛欢, 卢君实, 刘志强.高密度电法在场地地质综合评价中的应用[J].矿产勘查, 2018, 9(7): 1394-1399. GE Huan, LU Junshi, LIU Zhiqiang. Application of high density resistivity method on comprehensive evaluation for site geological[J]. Mineral Exploration, 2018, 9(7): 1394-1399.
[16] 占文锋, 张浩.二维高密度电法不同装置异常体探测模拟与实践分析[J].工程地球物理学报, 2018, 15(6): 755-763. ZHAN Wenfeng, ZHANG Hao. Simulation and practical analysis of 2D high density electrical method on detecting geological anomaly bodies with different device forms[J]. Chinese Journal of Engineering Geophysics, 2018, 15(6): 755-763.
[17] 梁亚娜, 傅守忠, 王世芳.方向导数的计算公式的注记[J].大学数学, 2022, 38(2): 75-78. LIANG Yana, FU Shouzhong, WANG Shifang. A new proof for the computing formula of directional derivative by using schmidt orthogonalization[J]. College Mathematics, 2022, 38(2): 75-78.
[18] 金聪, 刘江平.二维高密度电阻率法数值模拟与应用[J].地质与勘探, 2014, 50(5): 984-990. JIN Cong, LIU Jiangping. Two-dimensional numerical simulation and application of the high-intensity resistivity method[J]. Geology and Exploration, 2014, 50(5): 984-990.
[19] 李生生, 高晓耕, 周禹良, 等.综合物探技术在采空区勘探中的应用[J].煤矿安全, 2016, 47(7): 62-65. LI Shengsheng, GAO Xiaogeng, ZHOU Yuliang, et al. Application of complex geophysical prospecting in gob exploration[J]. Safety in Coal Mines, 2016, 47(7): 62 -65.
[20] DUBA A G. Electrical conductivity of coal and coal char[J]. Fuel, 1977, 56(4): 441-443.
计量
- 文章访问数: 40
- HTML全文浏览量: 11
- PDF下载量: 23