沁水盆地深部煤层气水平井定向钻进地质导向技术
Geological steering technology for directional drilling of deep CBM horizontal wells in Qinshui Basin
-
摘要: 沁水盆地内深部煤层地质构造较为复杂,对水平井定向着陆点控制及水平段钻进轨迹控制构成新的挑战,传统基于导眼钻进探查所得的目标层及紧邻相关层位地质特征数据及岩性判别等方法,难以满足实际定向钻进过程中精准轨迹控制,无法实现顺层钻进的要求。为了解决深井水平定向钻进控制问题,提出了一套适用于适用于深部煤层气水平定向钻进地质导向技术,通过前期谐振解析分析判断目的煤层地质构造情况,设计施工导眼获取目标地层参数,采用精准着陆技术和水平段地质导向技术完成钻井工作。该技术在沁水盆地武乡南区块WXN-T27-L1井试验应用,钻进水平段长708.00 m,煤层钻遇率达85.51%,显著提高煤层钻遇率、缩短钻井周期。Abstract: The geological structure of the deep coal seam in Qinshui Basin is relatively complex, which poses a new challenge to the control of the directional landing site of the horizontal well and the control of the drilling trajectory of the horizontal section, and the traditional methods based on the geological characteristics data and lithology of the target layer obtained by the guide hole drilling exploration are difficult to meet the precise trajectory control in the actual directional drilling process, and the requirements of drilling along the layer cannot be realized. In order to solve the problem of horizontal directional drilling control of deep wells, a set of geological guidance technology suitable for horizontal directional drilling of deep coalbed methane was proposed. The geological structure of the target coal seam was judged by early resonance analysis, the target formation parameters were obtained by the design and construction guide hole, and the drilling work was completed by using precise landing technology and horizontal section geological guidance technology. The technology was tested and applied in WXN-T27-L1 well in south Wuxiang block of Qinshui Basin, with a drilling horizontal section length of 708.00 m and a coal seam drilling rate of 85.51%, which significantly improved the coal seam drilling rate and shortened the drilling cycle.
-
-
[1] 降文萍, 张培河, 李忠城, 等.深部煤层气异常地质特征及开发技术探讨[J].煤炭工程, 2022, 54(6): 158-164. JIANG Wenping, ZHANG Peihe, LI Zhongcheng, et al. Discussion on abnormal geological characteristics of deep coalbed methane and the development technology[J]. Coal Engineering, 2022, 54(6): 158-164.
[2] 刘明军, 李兵, 黄巍.煤层气水平井无导眼地质导向钻进技术[J].煤田地质与勘探, 2020, 48(1): 233-239. LIU Mingjun, LI Bing, HUANG Wei. Geosteering technology and CBM horizontal well drilling without pilot hole[J]. Coal Geology & Exploration, 2020, 48(1): 233-239.
[3] 孙佃金, 孙蕾.地质导向技术在煤层气水平井施工中的应用[J].煤田地质与勘探, 2015, 43(2): 106-108. SUN Dianjin, SUN Lei. Application of geosteering technology in construction of CBM horizontal well[J]. Coal Geology & Exploration, 2015, 43(2): 106-108.
[4] 申瑞臣, 闫立飞, 乔磊, 等.煤层气多分支井地质导向技术应用分析[J].煤炭科学技术, 2016, 44(5): 43-49. SHEN Ruichen, YAN Lifei, QIAO Lei. Application and analysis on geosteering technology of coalbed methane multi branch wells[J]. Coal Science and Technology, 2016, 44(5): 43-49.
[5] 张武, 徐照营, 丁艳红, 等.黔北DZ地区页岩气储层二维地震解释与预测[C]//.中国石油学会2019年物探技术研讨会论文集.北京: 中国石油学会, 2019: 877-880. [6] 侯征, 王天意, 于长春, 等.基于航磁数据的三维地质建模研究[J].地球科学进展, 2018, 33(3): 257-269. HOU Zheng, WANG Tianyi, YU Changchun, et al. Study of 3D geological modeling based on aeromagnetic data[J]. Advances in Earth Sciences, 2018, 33(3): 257-269.
[7] 张强.沁水盆地郑庄区块15#煤L型水平井钻完井关键技术[J].煤炭工程, 2021, 53(11): 61-66. ZHANG Qiang. Key technologies for drilling and completion of No.15 coal L-shaped horizontal well in Zheng-zhuang block, Qinshui Basin[J]. Coal Engineering, 2021, 53(11): 61-66.
[8] 王忠良, 周扬, 文晓峰, 等.长庆油田小井眼超长水平段水平井钻井技术[J].石油钻探技术, 2021, 49(5): 14-18. WANG Zhongliang, ZHOU Yang, WEN Xiaofeng, et al. Drilling technologies for horizontal wells with ultra-long horizontal section and slim hole in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 14-18.
[9] 陈振刚.兴古7-H208保留深层水平井导眼技术[J].石油钻采工艺, 2010, 32(6): 112-114. CHEN Zhengang. Using multilateral technique to retain deep horizontal pilot wellbore in Xinggu7-H208[J]. Oil Drilling & Production Technology, 2010, 32(6): 112-114.
[10] 刘立军, 陈必武, 李宗源, 等.华北油田煤层气水平井钻完井方式优化与应用[J].煤炭工程, 2019, 51(10): 77-81. LIU Lijun, CHEN Biwu, LI Zongyuan, et al. Optimization of drilling and completion methods for horizontal wells of coalbed methane in Huabei Oilfield[J]. Coal Engineering, 2019, 51(10): 77-81.
[11] 武程亮.方位伽马在煤层气水平井中的应用[J].钻探工程, 2021, 48(5): 69-75. WU Chengliang. Application of azimuth gamma in coal bed methane horizontal wells[J]. Drilling Engineering, 2021, 48(5): 69-75.
[12] 胡斌, 马鸿彦, 黄秉亚, 等.近钻头方位伽马随钻测量系统的研制与应用[J].石油钻采工艺, 2021, 43(5): 613-618. HU Bin, MA Hongyan, HUANG Bingya, et al. Development and application of near-bit azimuth gamma MWD system[J]. Oil Drilling & Production Technology, 2021, 43(5): 613-618.
[13] 王磊, 李林, 盛利民, 等.煤层气方位伽马测量短节的研制[J].石油机械, 2013, 41(9): 16-19. WANG Lei, LI Lin, SHENG Limin, et al. Development of CBM azimuth gamma measurement sub[J]. China Petroleum Machinery, 2013, 41(9): 16-19.
[14] 宋慧波, 安红亮, 刘顺喜, 等.沁水盆地武乡南煤层气赋存主控地质因素及富集区预测[J].煤炭学报, 2021, 46(12): 3974-3987. SONG Huibo, AN Hongliang, LIU Shunxi, et al. Controlling geological factors and coalbed methane enrichment areas in Southern Wuxiang Block, Qinshui Basin[J]. Journal of China Coal Society, 2021, 46(12): 3974-3987.
[15] 李文霞, 王居贺, 王治国, 等.顺北油气田超深高温水平井井眼轨迹控制技术[J].石油钻探技术, 2022, 50(4): 18-24. LI Wenxia, WANG Juhe, WANG Zhiguo, et al. Wellbore trajectory control technologies for ultra-deep and high-temperature horizontal wells in the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 18-24.
[16] 王光宇, 张文宁.水平井优快钻井技术研究与认识[J].西部探矿工程, 2022, 34(9): 41-42.
计量
- 文章访问数: 44
- HTML全文浏览量: 13
- PDF下载量: 33